18 resultados para combinatorial pattern matching
em Greenwich Academic Literature Archive - UK
Resumo:
A visibility/invisibility paradox of trust operates in the development of distributed educational leadership for online communities. If trust is to be established, the team-based informal ethos of online collaborative networked communities requires a different kind of leadership from that observed in more formal face-to-face positional hierarchies. Such leadership is more flexible and sophisticated, being capable of encompassing both ambiguity and agile response to change. Online educational leaders need to be partially invisible, delegating discretionary powers, to facilitate the effective distribution of leadership tasks in a highly trusting team-based culture. Yet, simultaneously, online communities are facilitated by the visibility and subtle control effected by expert leaders. This paradox: that leaders need to be both highly visible and invisible when appropriate, was derived during research on 'Trust and Leadership' and tested in the analysis of online community case study discussions using a pattern-matching process to measure conversational interactions. This paper argues that both leader visibility and invisibility are important for effective trusting collaboration in online distributed leadership. Advanced leadership responses to complex situations in online communities foster positive group interaction, mutual trust and effective decision-making, facilitated through the active distribution of tasks.
Resumo:
This paper introduces a mechanism for representing and recognizing case history patterns with rich internal temporal aspects. A case history is characterized as a collection of elemental cases as in conventional case-based reasoning systems, together with the corresponding temporal constraints that can be relative and/or with absolute values. A graphical representation for case histories is proposed as a directed, partially weighted and labeled simple graph. In terms of such a graphical representation, an eigen-decomposition graph matching algorithm is proposed for recognizing case history patterns.
Resumo:
Temporal representation and reasoning plays an important role in Data Mining and Knowledge Discovery, particularly, in mining and recognizing patterns with rich temporal information. Based on a formal characterization of time-series and state-sequences, this paper presents the computational technique and algorithm for matching state-based temporal patterns. As a case study of real-life applications, zone-defense pattern recognition in basketball games is specially examined as an illustrating example. Experimental results demonstrate that it provides a formal and comprehensive temporal ontology for research and applications in video events detection.
Resumo:
The importance of patterns in constructing complex systems has long been recognised in other disciplines. In software engineering, for example, well-crafted object-oriented architectures contain several design patterns. Focusing on mechanisms of constructing software during system development can yield an architecture that is simpler, clearer and more understandable than if design patterns were ignored or not properly applied. In this paper, we propose a model that uses object-oriented design patterns to develop a core bitemporal conceptual model. We define three core design patterns that form a core bitemporal conceptual model of a typical bitemporal object. Our framework is known as the Bitemporal Object, State and Event Modelling Approach (BOSEMA) and the resulting core model is known as a Bitemporal Object, State and Event (BOSE) model. Using this approach, we demonstrate that we can enrich data modelling by using well known design patterns which can help designers to build complex models of bitemporal databases.
Resumo:
Preface [Special Issue containing a selection of papers presented at the International Symposium on Combinatorial Optimisation (CO2000) held at the University of Greenwich, London, from 12-14 July 2000.
Resumo:
We consider the multilevel paradigm and its potential to aid the solution of combinatorial optimisation problems. The multilevel paradigm is a simple one, which involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found (sometimes for the original problem, sometimes the coarsest) and then iteratively refined at each level. As a general solution strategy, the multilevel paradigm has been in use for many years and has been applied to many problem areas (most notably in the form of multigrid techniques). However, with the exception of the graph partitioning problem, multilevel techniques have not been widely applied to combinatorial optimisation problems. In this paper we address the issue of multilevel refinement for such problems and, with the aid of examples and results in graph partitioning, graph colouring and the travelling salesman problem, make a case for its use as a metaheuristic. The results provide compelling evidence that, although the multilevel framework cannot be considered as a panacea for combinatorial problems, it can provide an extremely useful addition to the combinatorial optimisation toolkit. We also give a possible explanation for the underlying process and extract some generic guidelines for its future use on other combinatorial problems.
Resumo:
Fractal video compression is a relatively new video compression method. Its attraction is due to the high compression ratio and the simple decompression algorithm. But its computational complexity is high and as a result parallel algorithms on high performance machines become one way out. In this study we partition the matching search, which occupies the majority of the work in a fractal video compression process, into small tasks and implement them in two distributed computing environments, one using DCOM and the other using .NET Remoting technology, based on a local area network consists of loosely coupled PCs. Experimental results show that the parallel algorithm is able to achieve a high speedup in these distributed environments.
Resumo:
A cross-domain workflow application may be constructed using a standard reference model such as the one by the Workflow Management Coalition (WfMC) [7] but the requirements for this type of application are inherently different from one organization to another. The existing models and systems built around them meet some but not all the requirements from all the organizations involved in a collaborative process. Furthermore the requirements change over time. This makes the applications difficult to develop and distribute. Service Oriented Architecture (SOA) based approaches such as the BPET (Business Process Execution Language) intend to provide a solution but fail to address the problems sufficiently, especially in the situations where the expectations and level of skills of the users (e.g. the participants of the processes) in different organisations are likely to be different. In this paper, we discuss a design pattern that provides a novel approach towards a solution. In the solution, business users can design the applications at a high level of abstraction: the use cases and user interactions; the designs are documented and used, together with the data and events captured later that represents the user interactions with the systems, to feed an intermediate component local to the users -the IFM (InterFace Mapper) -which bridges the gaps between the users and the systems. We discuss the main issues faced in the design and prototyping. The approach alleviates the need for re-programming with the APIs to any back-end service thus easing the development and distribution of the applications
Resumo:
In this paper, we shall critically examine a special class of graph matching algorithms that follow the approach of node-similarity measurement. A high-level algorithm framework, namely node-similarity graph matching framework (NSGM framework), is proposed, from which, many existing graph matching algorithms can be subsumed, including the eigen-decomposition method of Umeyama, the polynomial-transformation method of Almohamad, the hubs and authorities method of Kleinberg, and the kronecker product successive projection methods of Wyk, etc. In addition, improved algorithms can be developed from the NSGM framework with respects to the corresponding results in graph theory. As the observation, it is pointed out that, in general, any algorithm which can be subsumed from NSGM framework fails to work well for graphs with non-trivial auto-isomorphism structure.
Resumo:
The multilevel paradigm as applied to combinatorial optimisation problems is a simple one, which at its most basic involves recursive coarsening to create a hierarchy of approximations to the original problem. An initial solution is found, usually at the coarsest level, and then iteratively refined at each level, coarsest to finest, typically by using some kind of heuristic optimisation algorithm (either a problem-specific local search scheme or a metaheuristic). Solution extension (or projection) operators can transfer the solution from one level to another. As a general solution strategy, the multilevel paradigm has been in use for many years and has been applied to many problem areas (for example multigrid techniques can be viewed as a prime example of the paradigm). Overview papers such as [] attest to its efficacy. However, with the exception of the graph partitioning problem, multilevel techniques have not been widely applied to combinatorial problems and in this chapter we discuss recent developments. In this chapter we survey the use of multilevel combinatorial techniques and consider their ability to boost the performance of (meta)heuristic optimisation algorithms.
Resumo:
This paper examines different ways of measuring similarity between software design models for Case Based Reasoning (CBR) to facilitate reuse of software design and code. The paper considers structural and behavioural aspects of similarity between software design models. Similarity metrics for comparing static class structures are defined and discussed. A Graph representation of UML class diagrams and corresponding similarity measures for UML class diagrams are defined. A full search graph matching algorithm for measuring structural similarity diagrams based on the identification of the Maximum Common Sub-graph (MCS) is presented. Finally, a simple evaluation of the approach is presented and discussed.