10 resultados para code generation
em Greenwich Academic Literature Archive - UK
Resumo:
The availability of a very accurate dependence graph for a scalar code is the basis for the automatic generation of an efficient parallel implementation. The strategy for this task which is encapsulated in a comprehensive data partitioning code generation algorithm is described. This algorithm involves the data partition, calculation of assignment ranges for partitioned arrays, addition of a comprehensive set of execution control masks, altering loop limits, addition and optimisation of communications for all data. In this context, the development and implementation of strategies to merge communications wherever possible has proved an important feature in producing efficient parallel implementations for numerical mesh based codes. The code generation strategies described here are embedded within the Computer Aided Parallelisation tools (CAPTools) software as a key part of a toolkit for automating as much as possible of the parallelisation process for mesh based numerical codes. The algorithms used enables parallelisation of real computational mechanics codes with only minor user interaction and without any prior manual customisation of the serial code to suit the parallelisation tool.
Resumo:
This paper addresses the exploitation of overlapping communication with calculation within parallel FORTRAN 77 codes for computational fluid dynamics (CFD) and computational structured dynamics (CSD). The obvious objective is to overlap interprocessor communication with calculation on each processor in a distributed memory parallel system and so improve the efficiency of the parallel implementation. A general strategy for converting synchronous to overlapped communication is presented together with tools to enable its automatic implementation in FORTRAN 77 codes. This strategy is then implemented within the parallelisation toolkit, CAPTools, to facilitate the automatic generation of parallel code with overlapped communications. The success of these tools are demonstrated on two codes from the NAS-PAR and PERFECT benchmark suites. In each case, the tools produce parallel code with overlapped communications which is as good as that which could be generated manually. The parallel performance of the codes also improve in line with expectation.
Resumo:
Many code generation tools exist to aid developers in carrying out common mappings, such as from Object to XML or from Object to relational database. Such generated code tends to possess a high binding between the Object code and the target mapping, making integration into a broader application tedious or even impossible. In this paper we suggest XML technologies and the multiple inheritance capabilities of interface based languages such as Java, offer a means to unify such executable specifications, thus building complete, consistent and useful object models declaratively, without sacrificing component flexibility.
Resumo:
Despite the apparent simplicity of the OpenMP directive shared memory programming model and the sophisticated dependence analysis and code generation capabilities of the ParaWise/CAPO tools, experience shows that a level of expertise is required to produce efficient parallel code. In a real world application the investigation of a single loop in a generated parallel code can soon become an in-depth inspection of numerous dependencies in many routines. The additional understanding of dependencies is also needed to effectively interpret the information provided and supply the required feedback. The ParaWise Expert Assistant has been developed to automate this investigation and present questions to the user about, and in the context of, their application code. In this paper, we demonstrate that knowledge of dependence information and OpenMP are no longer essential to produce efficient parallel code with the Expert Assistant. It is hoped that this will enable a far wider audience to use the tools and subsequently, exploit the benefits of large parallel systems.
Resumo:
Code parallelization using OpenMP for shared memory systems is relatively easier than using message passing for distributed memory systems. Despite this, it is still a challenge to use OpenMP to parallelize application codes in a way that yields effective scalable performance when executed on a shared memory parallel system. We describe an environment that will assist the programmer in the various tasks of code parallelization and this is achieved in a greatly reduced time frame and level of skill required. The parallelization environment includes a number of tools that address the main tasks of parallelism detection, OpenMP source code generation, debugging and optimization. These tools include a high quality, fully interprocedural dependence analysis with user interaction capabilities to facilitate the generation of efficient parallel code, an automatic relative debugging tool to identify erroneous user decisions in that interaction and also performance profiling to identify bottlenecks. Finally, experiences of parallelizing some NASA application codes are presented to illustrate some of the benefits of using the evolving environment.
Resumo:
User supplied knowledge and interaction is a vital component of a toolkit for producing high quality parallel implementations of scalar FORTRAN numerical code. In this paper we consider the necessary components that such a parallelisation toolkit should possess to provide an effective environment to identify, extract and embed user relevant user knowledge. We also examine to what extent these facilities are available in leading parallelisation tools; in particular we discuss how these issues have been addressed in the development of the user interface of the Computer Aided Parallelisation Tools (CAPTools). The CAPTools environment has been designed to enable user exploration, interaction and insertion of user knowledge to facilitate the automatic generation of very efficient parallel code. A key issue in the user's interaction is control of the volume of information so that the user is focused on only that which is needed. User control over the level and extent of information revealed at any phase is supplied using a wide variety of filters. Another issue is the way in which information is communicated. Dependence analysis and its resulting graphs involve a lot of sophisticated rather abstract concepts unlikely to be familiar to most users of parallelising tools. As such, considerable effort has been made to communicate with the user in terms that they will understand. These features, amongst others, and their use in the parallelisation process are described and their effectiveness discussed.
Resumo:
SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.
Resumo:
This paper describes an interactive parallelisation toolkit that can be used to generate parallel code suitable for either a distributed memory system (using message passing) or a shared memory system (using OpenMP). This study focuses on how the toolkit is used to parallelise a complex heterogeneous ocean modelling code within a few hours for use on a shared memory parallel system. The generated parallel code is essentially the serial code with OpenMP directives added to express the parallelism. The results show that substantial gains in performance can be achieved over the single thread version with very little effort.
Resumo:
This chapter discusses the code parallelization environment, where a number of tools that address the main tasks, such as code parallelization, debugging, and optimization are available. The parallelization tools include ParaWise and CAPO, which enable the near automatic parallelization of real world scientific application codes for shared and distributed memory-based parallel systems. The chapter discusses the use of ParaWise and CAPO to transform the original serial code into an equivalent parallel code that contains appropriate OpenMP directives. Additionally, as user involvement can introduce errors, a relative debugging tool (P2d2) is also available and can be used to perform near automatic relative debugging of an OpenMP program that has been parallelized either using the tools or manually. In order for these tools to be effective in parallelizing a range of applications, a high quality fully inter-procedural dependence analysis, as well as user interaction is vital to the generation of efficient parallel code and in the optimization of the backtracking and speculation process used in relative debugging. Results of parallelized NASA codes are discussed and show the benefits of using the environment.