8 resultados para chemical solution method
em Greenwich Academic Literature Archive - UK
Resumo:
Different industrial induction melting processes involve free surface and melt-solid interface of the liquid metal subject to dynamic change during the technological operation. Simulation of the liquid metal dynamics requires to solve the non-linear, coupled hydrodynamic-electromagnetic-heat transfer problem accounting for the time development of the liquid metal free boundary with a suitable turbulent viscosity model. The present paper describes a numerical solution method applicable for various axisymmetric induction melting processes, such as, crucible with free top surface, levitation, semi-levitation, cold crucible and similar melting techniques. The presented results in the cases of semi-levitation and crucible with free top surface meltings demonstrate oscillating transient behaviour of the free metal surface indicating the presence of gravity-inertial-electromagnetic waves which are coupled to the internal fluid flow generated by both the rotational and potential parts of the electromagnetic force.
Resumo:
The PHYSICA software was developed to enable multiphysics modelling allowing for interaction between Computational Fluid Dynamics (CFD) and Computational Solid Mechanics (CSM) and Computational Aeroacoustics (CAA). PHYSICA uses the finite volume method with 3-D unstructured meshes to enable the modelling of complex geometries. Many engineering applications involve significant computational time which needs to be reduced by means of a faster solution method or parallel and high performance algorithms. It is well known that multigrid methods serve as a fast iterative scheme for linear and nonlinear diffusion problems. This papers attempts to address two major issues of this iterative solver, including parallelisation of multigrid methods and their applications to time dependent multiscale problems.
Resumo:
The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element/volume/difference methods, particularly when the long-time transient behaviour of a system is of interest. Since the exact solution is obtained at the grid collocation points superior accuracy can be achieved on modest grid resolution. Furthermore, the grid can be freely adapted with time and in space, to particular flow conditions or geometric variations. This is especially advantageous where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free sutface. The electromagnetic field then determines the instantaneous liquid volume shape and the liquid shape affects in turn the electromagnetic field. In AC applications a thin "skin effect" region results on the free surface that dominates grid requirements. Infinitesimally thin boundary cells can be introduced using Chebyshev polynomial expansions without detriment to the numerical accuracy. This paper presents a general methodology of the pseudo-spectral approach and outlines the solution procedures used. Several instructive example applications are given: the aluminium electrolysis MHD problem, induction melting and stirring and the dynamics of magnetically levitated droplets in AC and DC fields. Comparisons to available analytical solutions and to experimental measurements will be discussed.
Resumo:
The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element and volume methods, particularly when the long-time transient behaviour of a system is of interest. The exact solution is obtained at grid collocation points leading to superior accuracy on modest grids. Furthermore, the grid can be freely adapted in time and space to particular flow conditions or geometric variations, especially useful where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free surface. The electromagnetic field determines the instantaneous liquid volume shape, which then affects the electromagnetic field. A general methodology of the pseudo-spectral approach is presented, with several instructive example applications: the aluminium electrolysis MHD problem, induction melting in a cold crucible and the dynamics of AC/DC magnetically levitated droplets. Finally, comparisons with available analytical solutions and to experimental measurements are discussed.
Resumo:
Melting of metallic samples in a cold crucible causes inclusions to concentrate on the surface owing to the action of the electromagnetic force in the skin layer. This process is dynamic, involving the melting stage, then quasi-stationary particle separation, and finally the solidification in the cold crucible. The proposed modeling technique is based on the pseudospectral solution method for coupled turbulent fluid flow, thermal and electromagnetic fields within the time varying fluid volume contained by the free surface, and partially the solid crucible wall. The model uses two methods for particle tracking: (1) a direct Lagrangian particle path computation and (2) a drifting concentration model. Lagrangian tracking is implemented for arbitrary unsteady flow. A specific numerical time integration scheme is implemented using implicit advancement that permits relatively large time-steps in the Lagrangian model. The drifting concentration model is based on a local equilibrium drift velocity assumption. Both methods are compared and demonstrated to give qualitatively similar results for stationary flow situations. The particular results presented are obtained for iron alloys. Small size particles of the order of 1 μm are shown to be less prone to separation by electromagnetic field action. In contrast, larger particles, 10 to 100 μm, are easily “trapped” by the electromagnetic field and stay on the sample surface at predetermined locations depending on their size and properties. The model allows optimization for melting power, geometry, and solidification rate.
Resumo:
Different industrial induction melting processes involve free surface and melt-solid interface of the liquid metal subject to dynamic change during the technological operation. Simulation of the liquid metal dynamics requires to solve the non-linear, coupled hydrodynamic-electromagnetic-heat transfer problem accounting for the time development of the liquid metal free boundary with a suitable turbulent viscosity model. The present paper describes a numerical solution method applicable for various axisymmetric induction melting processes, such as, crucible with free top surface, levitation, semi-levitation, cold crucible and similar melting techniques. The presented results in the cases of semi-levitation and crucible with free top surface meltings demonstrate oscillating transient behaviour of the free metal surface indicating the presence of gravity-inertial-electromagnetic waves which are coupled to the internal fluid flow generated by both the rotational and potential parts of the electromagnetic force.
Resumo:
In this paper, we first demonstrate that the classical Purcell's vector method when combined with row pivoting yields a consistently small growth factor in comparison to the well-known Gauss elimination method, the Gauss–Jordan method and the Gauss–Huard method with partial pivoting. We then present six parallel algorithms of the Purcell method that may be used for direct solution of linear systems. The algorithms differ in ways of pivoting and load balancing. We recommend algorithms V and VI for their reliability and algorithms III and IV for good load balance if local pivoting is acceptable. Some numerical results are presented.
Resumo:
An innovative methodology has been used for the formulation development of Cyclosporine A (CyA) nanoparticles. In the present study the static mixer technique, which is a novel method for producing nanoparticles, was employed. The formulation optimum was calculated by the modified Shepard's method (MSM), an advanced data analysis technique not adopted so far in pharmaceutical applications. Controlled precipitation was achieved injecting the organic CyA solution rapidly into an aqueous protective solution by means of a static mixer. Furthermore the computer based MSM was implemented for data analysis, visualization, and application development. For the optimization studies, the gelatin/lipoid S75 amounts and the organic/aqueous phase were selected as independent variables while the obtained particle size as a dependent variable. The optimum predicted formulation was characterized by cryo-TEM microscopy, particle size measurements, stability, and in vitro release. The produced nanoparticles contain drug in amorphous state and decreased amounts of stabilizing agents. The dissolution rate of the lyophilized powder was significantly enhanced in the first 2 h. MSM was proved capable to interpret in detail and to predict with high accuracy the optimum formulation. The mixer technique was proved capable to develop CyA nanoparticulate formulations.