9 resultados para cement retention

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO2 as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1: 1. The concentrations of mercury and other heavy metals in the leachates were below 0.10 mg/L and 5 mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na2CO3 and CO2 may practically apply to cement-based s/s of heavy metal-bearing sediment. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heavy metal-bearing waste usually needs solidification/stabilization (s/s) prior to landfill to lower the leaching rate. Cement is the most adaptable binder currently available for the immobilisation of heavy metals. The selection of cements and operating parameters depends upon an understanding of chemistry of the system. This paper discusses interactions of heavy metals and cement phases in the solidification/stabilisation process. It provides a clarification of heavy metal effects on cement hydration. According to the decomposition rate of minerals, heavy metals accelerate the hydration of tricalcium silicate (C3S) and Portland cement, although they retard the precipitation of portlandite due to the reduction of pH resulted from hydrolyses of heavy metal ions. The chemical mechanism relevant to the accelerating effect of heavy metals is considered to be H+ attacks on cement phases and the precipitation of calcium heavy metal double hydroxides, which consumes calcium ions and then promotes the decomposition Of C3S. In this work, molecular models of calcium silicate hydrate gel are presented based on the examination of Si-29 solid-state magic angle spinning/nuclear magnetic resonance (MAS/NMR). This paper also reviews immobilisation mechanisms of heavy metals in hydrated cement matrices, focusing on the sorption, precipitation and chemical incorporation of cement hydration products. It is concluded that further research oil the phase development during cement hydration in the presence of heavy metals and thermodynamic modelling is needed to improve effectiveness of cement-based s/s and extend this waste management technique. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In response to a burgeoning interest in the prospective clinical applications of hydraulic calcium (alumino)silicate cements, the in vitro bioactivity and dissolution characteristics of a white Portland cement have been investigated. The formation of an apatite layer within 6 h of contact with simulated body fluid was attributed to the rapid dissolution of calcium hydroxide from the cement matrix and to the abundance of pre-existing Si-OH nucleation sites presented by the calcium silicate hydrate phase. A simple kinetic model has been used to describe the rate of apatite formation and an apparent pseudo-second-order rate constant for the removal of HPO42- ions frorn solultion has been calculated (k(2) = 5.8 x 10(-4) g mg(-1)). Aspects of the chemistry of hydraulic cements are also discussed with respect to their potential use in the remedial treatment of living tissue. (C) 2008 Wiley Periodicals, Inc. J Biomed Mater Res 90A: 166-174, 2009

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Portland cement (PC) and blended cements containing pulverized fuel ash (PFA) or granulated blast-furnace slag (GGBS) were used to solidify/stabilize an electroplating sludge in this work. The acid neutralization capacity (ANC) of the hydrated pastes increased in the order of PC > PC/GGBS > PC/PFA. The GGBS or PFA replacement (80 wt%) reduced the ANC of the hydrated pastes by 30–50%. The ANC of the blended cement-solidified electroplating sludge (cement/sludge 1:2) was 20–30% higher than that of the hydrated blended cement pastes. Upon carbonation, there was little difference in the ANC of the three cement pastes, but the presence of electroplating sludge (cement/sludge 1:2) increased the ANC by 20%. Blended cements were more effective binders for immobilization of Ni, Cr and Cu, compared with PC, whereas Zn was encapsulated more effectively in the latter. Accelerated carbonation improved the immobilization of Cr, Cu and Zn, but not Ni. The geochemical code PHREEQC, with the edited database from EQ3/6 and HATCHES, was used to calculate the saturation index and solubility of likely heavy metal precipitates in cement-based solidification/stabilization systems. The release of heavy metals could be related to the disruption of cement matrices and the remarkable variation of solubility of heavy metal precipitates at different pH values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 × 10(−6) cm(2) s(−1) (for 1% concentration) to 10.90 × 10(−6) cm(2) s(−1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Water uptake and water loss have been studied in a commercial resin-modified glass-ionomer cement, Fuji II LC, under a variety of conditions. Uptake was generally non-Fickian, but affected by temperature. At room temperature, the equilibrium water uptake values varied from 2.47 to 2.78% whereas at low temperature (12 degrees C), it varied from 0.85 to 1.18%. Cure time affected uptake values significantly. Water uptake was much lower than in conventional glass-ionomer restorative cements exposed to water vapor. Loss of water under desiccating conditions was found to be Fickian for the first 5 h loss at both 22 and 12 degrees C. Diffusion coefficients were between 0.45 and 0.76 x 10( -7) cm(2)/s, with low temperature diffusion coefficients slightly greater than those at room temperature. Plotting water loss as percentage versus s(-(1/2)) allowed activation energies to be determined from the Arrhenius equation and these were found to be 65.6, 79.8, and 7.7 kJ/mol respectively for 30, 20, and 10 s cure times. The overall conclusion is that the main advantage of incorporating HEMA into resin-modified-glass-ionomers is to alter water loss behavior. Rate of water loss and total amount lost are both reduced. Hence, resin-modified glass-ionomers are less sensitive to water loss than conventional glass-ionomers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Freshly-mixed and partially-cured ordinary Portland cement (OPC) pastes have been shown to exhibit good biological compatibility with a range of cells and tissue-types; particularly those associated with bone formation. Formulations based on OPC have been used as dental restoratives and are now being investigated for their potential use in orthopaedic repair. Despite the current clinical interest in OPCs, very little is known about their chemistry in the physiological environment. In this respect, research to investigate aspects of the interactions between a white Portland cement (WPC) paste and simulated body fluid (SBF) has been carried out in vitro. Exposure to SBF has been found to promote the precipitation of a layer of 'bone-like' hydroxyapatite on the surface of WPC paste which underpins its ability to integrate with living tissue. The dissolution of portlandite and formation of calcite were also observed on contact with SBF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrical specimens (6 mm high x 4 mm diameter) of the endodontic grade glass-ionomer (Ketac Endo) were exposed to various media for 1 week, after which changes in their mass, pH of storage medium, and ion release were determined. In water, this cement was shown to release reasonable amounts of sodium, aluminium and silicon, together with smaller amounts of calcium and phosphorus, as well as taking up 2.41% by mass of water. A comparison with the restorative grade materials (Ketac Molar, ex 3M ESPE and Fuji IX, ex GC) showed both ion release and water uptake to be greater. All three cements shifted pH from 7 to around 6 with no significant differences between them. Other storage media were found to alter the pattern of ion release. Lactic acid caused an increase, whereas both saturated calcium hydroxide and 0.6% sodium hypochlorite, caused decreases. This suppression of ion-release may be significant clinically. Aluminium is the most potentially hazardous of the ions involved but amounts released were low compared with levels previously reported to show biological damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Paper investigates whether affective and relational components of nurses' experience of work have a significant impact on their intentions to leave either the job or the nursing profession in models that control for other factors (sociodemographic, work conditions, perceptions of quality of care) that are known to affect career decisions. [Abridged Abstract]