4 resultados para cartographic generalisation
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper we propose a generalisation of the k-nearest neighbour (k-NN) retrieval method based on an error function using distance metrics in the solution and problem space. It is an interpolative method which is proposed to be effective for sparse case bases. The method applies equally to nominal, continuous and mixed domains, and does not depend upon an embedding n-dimensional space. In continuous Euclidean problem domains, the method is shown to be a generalisation of the Shepard's Interpolation method. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The performance of the retrieval method is examined with reference to the Iris classification problem,and to a simulated sparse nominal value test problem. The introducion of a solution-space metric is shown to out-perform conventional nearest neighbours methods on sparse case bases.
Resumo:
An industrial electrolysis cell used to produce primary aluminium is sensitive to waves at the interface of liquid aluminium and electrolyte. The interface waves are similar to stratified sea layers [1], but the penetrating electric current and the associated magnetic field are intricately involved in the oscillation process, and the observed wave frequencies are shifted from the purely hydrodynamic ones [2]. The interface stability problem is of great practical importance because the electrolytic aluminium production is a major electrical energy consumer, and it is related to environmental pollution rate. The stability analysis was started in [3] and a short summary of the main developments is given in [2]. Important aspects of the multiple mode interaction have been introduced in [4], and a widely used linear friction law first applied in [5]. In [6] a systematic perturbation expansion is developed for the fluid dynamics and electric current problems permitting reduction of the three-dimensional problem to a two dimensional one. The procedure is more generally known as “shallow water approximation” which can be extended for the case of weakly non-linear and dispersive waves. The Boussinesq formulation permits to generalise the problem for non-unidirectionally propagating waves accounting for side walls and for a two fluid layer interface [1]. Attempts to extend the electrolytic cell wave modelling to the weakly nonlinear case have started in [7] where the basic equations are derived, including the nonlinearity and linear dispersion terms. An alternative approach for the nonlinear numerical simulation for an electrolysis cell wave evolution is attempted in [8 and references there], yet, omitting the dispersion terms and without a proper account for the dissipation, the model can predict unstable waves growth only. The present paper contains a generalisation of the previous non linear wave equations [7] by accounting for the turbulent horizontal circulation flows in the two fluid layers. The inclusion of the turbulence model is essential in order to explain the small amplitude self-sustained oscillations of the liquid metal surface observed in real cells, known as “MHD noise”. The fluid dynamic model is coupled to the extended electromagnetic simulation including not only the fluid layers, but the whole bus bar circuit and the ferromagnetic effects [9].
Resumo:
In this paper we propose a method for interpolation over a set of retrieved cases in the adaptation phase of the case-based reasoning cycle. The method has two advantages over traditional systems: the first is that it can predict “new” instances, not yet present in the case base; the second is that it can predict solutions not present in the retrieval set. The method is a generalisation of Shepard’s Interpolation method, formulated as the minimisation of an error function defined in terms of distance metrics in the solution and problem spaces. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The method is illustrated in the paper with reference to the Irises classification problem. It is evaluated with reference to a simulated nominal value test problem, and to a benchmark case base from the travel domain. The algorithm is shown to out-perform conventional nearest neighbour methods on these problems. Finally, GSNN is shown to improve in efficiency when used in conjunction with a diverse retrieval algorithm.
Resumo:
This note provides a new probabilistic approach in discussing the weighted Markov branching process (WMBP) which is a natural generalisation of the ordinary Markov branching process. Using this approach, some important characteristics regarding the hitting times of such processes can be easily obtained. In particular, the closed forms for the mean extinction time and conditional mean extinction time are presented. The explosion behaviour of the process is investigated and the mean explosion time is derived. The mean global holding time and the mean total survival time are also obtained. The close link between these newly developed processes and the well-known compound Poisson processes is investigated. It is revealed that any weighted Markov branching process (WMBP) is a random time change of a compound Poisson process.