3 resultados para bismuth titanate
em Greenwich Academic Literature Archive - UK
Resumo:
Most lead bullion is refined by pyrometallurgical methods - this involves a serics of processes that remove the antimony (softening) silver (Parkes process), zinc (vacuum dezincing) and if need be, bismuth (Betterton-Kroll process). The first step, softening, removes the antimony, arsenic and tin by air oxidation in a furnace or by the Harris process. Next, in the Parkes process, zinc is added to the melt to remove the silver and gold. Insoluble zinc, silver and gold compounds are skimmed off from the melt surface. Excess zinc added during desilvering is removed from lead bullion using one of ghree methods: * Vacuum dezincing; * Chlorine dezincing; or * Harris dezincing. The present study concentrates on the Vacuum dezincing process for lead refining. The main aims of the research are to develop mathematical model(s), using Computational Fluid Dyanmics (CFD) a Surface Averaged Model (SAM), to predict the process behaviour under various operating conditions, thus providing detailed information of the process - insight into its reaction to changes of key operating parameters. Finally, the model will be used to optimise the process in terms of initial feed concentration, temperature, vacuum height cooling rate, etc.
Resumo:
This paper details the prototyping of a novel three axial micro probe based on utilisation of piezoelectric sensors and actuators for true three dimensional metrology and measurements at micro- and nanometre scale. Computational mechanics is used first to model and simulate the performance of the conceptual design of the micro-probe. Piezoelectric analysis is conducted to understand performance of three different materials - silicon, glassy carbon, and nickel - and the effect of load parameters (amplitude, frequency, phase angle) on the magnitude of vibrations. Simulations are also used to compare several design options for layout of the lead zirconium titanate (PZT) sensors and to identify the most feasible from fabrication point of view design. The material options for the realisation of the device have been also tested. Direct laser machining was selected as the primary means of production. It is found that a Yb MOPA based fiber laser was capable of providing the necessary precision on glassy carbon (GC), although machining trials on Si and Ni were less successful due to residual thermal effects.To provide the active and sensing elements on the flexures of the probe, PZT thick films are developed and deposited at low temperatures (Lt720 degC) allowing a high quality functional ceramic to be directly integrated with selected materials. Characterisation of the materials has shown that the film has a homogenous and small pore microstructure.
Resumo:
Mineral trioxide aggregate (MTA) is a clinical product comprising a mixture of Portland cement and bismuth oxide which is currently used as a root−filling material in dentistry. It has good biological compatibility, is capable of promoting both osteogenesis and cementogensis, and is finding increasing use in endodontic therapy. It is dimensionally stable, and provides an acceptable and durable seal for endodontically treated teeth. This article reviews the chemistry and applications of MTA, and highlights the fact that very little is currently known about the hydration chemistry, phase evolution and stability of this cement in physiological environments. However, biological effects of MTA have been well documented and are considered in detail. The article concludes that this material is a useful addition to the range of materials available for clinical application in endodontics.