2 resultados para bioactive compound

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: The aim of this study was to investigate the adaptation of different types of restorations towards deciduous and young permanent teeth. Materials and Methods: Class V cavities were prepared in deciduous and young permanent teeth and filled with different materials (a conventional glass-ionomer, a resin-modified glass-ionomer, a poly-acid-modified composite resin and a conventional composite resin). Specimens were aged in artificial saliva for 1, 6, 12 and 18 months, then examined by SEM. Results: The composite resin and the polyacid-modified composite had better marginal adaptation than the glass-ionomers,though microcracks developed in the enamel of the tooth. The glass-ionomers showed inferior marginal quality and durability, but no microcracking of the enamel. The margins of the resin-modified glass-ionomer were slightly superior to the conventional glass-ionomer. Conditioning improved the adaptation of the composite resin, but the type of tooth made little or no difference to the performance of the restorative material. All materials were associated with the formation of crystals in the gaps between the filling and the tooth; the quantity and shape of these crystals varied with the material. Conclusions: Resin-based materials are generally better at forming sound, durable margins in deciduous and young permanent teeth than cements, but are associated with microcracks in the enamel. All fluoride-releasing materials give rise to crystalline deposits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gel-derived CaO-SiO2 binary glasses of CaO mole fractions 0. 2, 0.3 and 0. 4 have been prepared and characterised. Pore diameter specific pore volume, skeletal density and porosity were found to increase with increasing CaO-content, whereas a concomitant decrease in specific surface area was observed. Si-29 NMR indicated that the 0.2 CaO mole fraction glass consisted of higly polymerized Q(4) and Q(3) silicate species, with some Q(2) units. With increasing CaO mole fraction, these silicate species became progressively depolymerised such that isolated SiO4 tetrahedra were detected within the 0.4 CaO glass matrix. Unusually, the glasses retained a proportion of Q(4) and Q(3) species as the CaO mole fraction was increased. All glass formulations exhibited in vitro bioactivity. The rate of hydroxyapatite precipitation followed the order 0.2 CaO > 0.4 CaO > > 0.3 CaO, an effect that is attributed to differences in the rate of dissolution of calcium from these glasses. This, in turn, appears to be dependent upon the proportion of Ca 21 participating in the formation of the glassy network.