4 resultados para basis of the solution space of a homogeneous sparse linear system

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a case base reduction technique which uses a metric defined on the solution space. The technique utilises the Generalised Shepard Nearest Neighbour (GSNN) algorithm to estimate nominal or real valued solutions in case bases with solution space metrics. An overview of GSNN and a generalised reduction technique, which subsumes some existing decremental methods, such as the Shrink algorithm, are presented. The reduction technique is given for case bases in terms of a measure of the importance of each case to the predictive power of the case base. A trial test is performed on two case bases of different kinds, with several metrics proposed in the solution space. The tests show that GSNN can out-perform standard nearest neighbour methods on this set. Further test results show that a caseremoval order proposed based on a GSNN error function can produce a sparse case base with good predictive power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A parallel genetic algorithm (PGA) is proposed for the solution of two-dimensional inverse heat conduction problems involving unknown thermophysical material properties. Experimental results show that the proposed PGA is a feasible and effective optimization tool for inverse heat conduction problems

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we propose a generalisation of the k-nearest neighbour (k-NN) retrieval method based on an error function using distance metrics in the solution and problem space. It is an interpolative method which is proposed to be effective for sparse case bases. The method applies equally to nominal, continuous and mixed domains, and does not depend upon an embedding n-dimensional space. In continuous Euclidean problem domains, the method is shown to be a generalisation of the Shepard's Interpolation method. We term the retrieval algorithm the Generalised Shepard Nearest Neighbour (GSNN) method. A novel aspect of GSNN is that it provides a general method for interpolation over nominal solution domains. The performance of the retrieval method is examined with reference to the Iris classification problem,and to a simulated sparse nominal value test problem. The introducion of a solution-space metric is shown to out-perform conventional nearest neighbours methods on sparse case bases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Over recent years there has been an increase in the use of generic Computational Fluid Dynamics (CFD) software packages spread across various application fields. This has created the need for the integration of expertise into CFD software. Expertise can be integrated into CFD software in the form of an Intelligent Knowledge-Based System (IKBS). The advantages of integrating intelligence into generic engineering software are discussed with a special view to software engineering considerations. The software modelling cycle of a typical engineering problem is identified and the respective expertise and user control needed for each modelling phase is shown. The requirements of an IKBS for CFD software are discussed and compared to current practice. The blackboard software architecture is presented. This is shown to be appropriate for the integration of an IKBS into an engineering software package. This is demonstrated through the presentation of the prototype CFD software package FLOWES.