8 resultados para bandwidth AMSC: 11T71,94A15,14G50
em Greenwich Academic Literature Archive - UK
Resumo:
An important factor for high-speed optical communication is the availability of ultrafast and low-noise photodetectors. Among the semiconductor photodetectors that are commonly used in today’s long-haul and metro-area fiber-optic systems, avalanche photodiodes (APDs) are often preferred over p-i-n photodiodes due to their internal gain, which significantly improves the receiver sensitivity and alleviates the need for optical pre-amplification. Unfortunately, the random nature of the very process of carrier impact ionization, which generates the gain, is inherently noisy and results in fluctuations not only in the gain but also in the time response. Recently, a theory characterizing the autocorrelation function of APDs has been developed by us which incorporates the dead-space effect, an effect that is very significant in thin, high-performance APDs. The research extends the time-domain analysis of the dead-space multiplication model to compute the autocorrelation function of the APD impulse response. However, the computation requires a large amount of memory space and is very time consuming. In this research, we describe our experiences in parallelizing the code in MPI and OpenMP using CAPTools. Several array partitioning schemes and scheduling policies are implemented and tested. Our results show that the code is scalable up to 64 processors on a SGI Origin 2000 machine and has small average errors.
Resumo:
There has been a recent revival of interest in the register insertion (RI) protocol because of its high throughput and low delay characteristics. Several variants of the protocol have been investigated with a view to integrating voice and data applications on a single local area network (LAN). In this paper the performance of an RI ring with a variable size buffer is studied by modelling and simulation. The chief advantage of the proposed scheme is that an efficient but simple bandwidth allocation scheme is easily incorporated. Approximate formulas are derived for queue lengths, queueing times, and total end-to-end transfer delays. The results are compared with previous analyses and with simulation estimates. The effectiveness of the proposed protocol in ensuring fairness of access under conditions of heavy and unequal loading is investigated.
Resumo:
The performance of the register insertion protocol for mixed voice-data traffic is investigated by simulation. The simulation model incorporates a common insertion buffer for station and ring packets. Bandwidth allocation is achieved by imposing a queue limit at each node. A simple priority scheme is introduced by allowing the queue limit to vary from node to node. This enables voice traffic to be given priority over data. The effect on performance of various operational and design parameters such as ratio of voice to data traffic, queue limit and voice packet size is investigated. Comparisons are made where possible with related work on other protocols proposed for voice-data integration. The main conclusions are: (a) there is a general degradation of performance as the ratio of voice traffic to data traffic increases, (b) substantial improvement in performance can be achieved by restricting the queue length at data nodes and (c) for a given ring utilisation, smaller voice packets result in lower delays for both voice and data traffic.
Resumo:
Traffic policing and bandwidth management strategies at the User Network Interface (UNI) of an ATM network are investigated by simulation. The network is assumed to transport real time (RT) traffic like voice and video as well as non-real time (non-RT) data traffic. The proposed policing function, called the super leaky bucket (S-LB), is based on the leaky bucket (LB), but handles the three types of traffic differently according to their quality of service (QoS) requirements. Separate queues are maintained for RT and non-RT traffic. They are normally served alternately, but if the number of RT cells exceeds a threshold, it gets non-pre-emptive priority. Further increase of the RT queue causes low priority cells to be discarded. Non-RT cells are buffered and the sources are throttled back during periods of congestion. The simulations clearly demonstrate the advantages of the proposed strategy in providing improved levels of service (delay, jitter and loss) for all types of traffic.
Resumo:
Light has the greatest information carrying potential of all the perceivable interconnect mediums; consequently, optical fiber interconnects rapidly replaced copper in telecommunications networks, providing bandwidth capacity far in excess of its predecessors. As a result the modern telecommunications infrastructure has evolved into a global mesh of optical networks with VCSEL’s (Vertical Cavity Surface Emitting Lasers) dominating the short-link markets, predominately due to their low-cost. This cost benefit of VCSELs has allowed optical interconnects to again replace bandwidth limited copper as bottlenecks appear on VSR (Very Short Reach) interconnects between co-located equipment inside the CO (Central-Office). Spurred by the successful deployment in the VSR domain and in response to both intra-board backplane applications and inter-board requirements to extend the bandwidth between IC’s (Integrated Circuits), current research is migrating optical links toward board level USR (Ultra Short Reach) interconnects. Whilst reconfigurable Free Space Optical Interconnect (FSOI) are an option, they are complicated by precise line-of-sight alignment conditions hence benefits exist in developing guided wave technologies, which have been classified into three generations. First and second generation technologies are based upon optical fibers and are both capable of providing a suitable platform for intra-board applications. However, to allow component assembly, an integral requirement for inter-board applications, 3rd generation Opto-Electrical Circuit Boards (OECB’s) containing embedded waveguides are desirable. Currently, the greatest challenge preventing the deployment of OECB’s is achieving the out-of-plane coupling to SMT devices. With the most suitable low-cost platform being to integrate the optics into the OECB manufacturing process, several research avenues are being explored although none to date have demonstrated sufficient coupling performance. Once in place, the OECB assemblies will generate new reliability issues such as assembly configurations, manufacturing tolerances, and hermetic requirements that will also require development before total off-chip photonic interconnection can truly be achieved
Resumo:
Optimisation in wireless sensor networks is necessary due to the resource constraints of individual devices, bandwidth limits of the communication channel, relatively high probably of sensor failure, and the requirement constraints of the deployed applications in potently highly volatile environments. This paper presents BioANS, a protocol designed to optimise a wireless sensor network for resource efficiency as well as to meet a requirement common to a whole class of WSN applications - namely that the sensor nodes are dynamically selected on some qualitative basis, for example the quality by which they can provide the required context information. The design of BioANS has been inspired by the communication mechanisms that have evolved in natural systems. The protocol tolerates randomness in its environment, including random message loss, and incorporates a non-deterministic ’delayed-bids’ mechanism. A simulation model is used to explore the protocol’s performance in a wide range of WSN configurations. Characteristics evaluated include tolerance to sensor node density and message loss, communication efficiency, and negotiation latency .
Resumo:
Orthogonal frequency division multiplexing (OFDM) systems are more sensitive to carrier frequency offset (CFO) compared to the conventional single carrier systems. CFO destroys the orthogonality among subcarriers, resulting in inter-carrier interference (ICI) and degrading system performance. To mitigate the effect of the CFO, it has to be estimated and compensated before the demodulation. The CFO can be divided into an integer part and a fractional part. In this paper, we investigate a maximum-likelihood estimator (MLE) for estimating the integer part of the CFO in OFDM systems, which requires only one OFDM block as the pilot symbols. To reduce the computational complexity of the MLE and improve the bandwidth efficiency, a suboptimum estimator (Sub MLE) is studied. Based on the hypothesis testing method, a threshold Sub MLE (T-Sub MLE) is proposed to further reduce the computational complexity. The performance analysis of the proposed T-Sub MLE is obtained and the analytical results match the simulation results well. Numerical results show that the proposed estimators are effective and reliable in both additive white Gaussian noise (AWGN) and frequency-selective fading channels in OFDM systems.
Resumo:
Orthogonal frequency division multiplexing(OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.