1 resultado para banana cultivars
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (2)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (3)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (2)
- Aquatic Commons (6)
- Archive of European Integration (1)
- Aston University Research Archive (1)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital | Sistema Integrado de Documentación | UNCuyo - UNCUYO. UNIVERSIDAD NACIONAL DE CUYO. (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (18)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (4)
- Bibloteca do Senado Federal do Brasil (17)
- Bioline International (2)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (3)
- Brock University, Canada (8)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (37)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (75)
- Cochin University of Science & Technology (CUSAT), India (7)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (7)
- CORA - Cork Open Research Archive - University College Cork - Ireland (4)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (3)
- Digital Commons at Florida International University (1)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (224)
- FAUBA DIGITAL: Repositorio institucional científico y académico de la Facultad de Agronomia de la Universidad de Buenos Aires (16)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (17)
- Indian Institute of Science - Bangalore - Índia (18)
- Infoteca EMBRAPA (69)
- INSTITUTO DE PESQUISAS ENERGÉTICAS E NUCLEARES (IPEN) - Repositório Digital da Produção Técnico Científica - BibliotecaTerezine Arantes Ferra (2)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico do Porto, Portugal (1)
- Livre Saber - Repositório Digital de Materiais Didáticos - SEaD-UFSCar (1)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (4)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (33)
- Queensland University of Technology - ePrints Archive (76)
- Repositório Alice (Acesso Livre à Informação Científica da Embrapa / Repository Open Access to Scientific Information from Embrapa) (32)
- Repositório Científico da Universidade de Évora - Portugal (3)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositorio Institucional da UFLA (RIUFLA) (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (139)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (1)
- SAPIENTIA - Universidade do Algarve - Portugal (5)
- Universidad Politécnica de Madrid (5)
- Universidade de Madeira (1)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (3)
- Universidade Federal do Pará (2)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universidade Técnica de Lisboa (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (10)
- Université de Montréal, Canada (5)
- University of Michigan (4)
- University of Queensland eSpace - Australia (36)
Resumo:
Artificial neural network (ANN) models for water loss (WL) and solid gain (SG) were evaluated as potential alternative to multiple linear regression (MLR) for osmotic dehydration of apple, banana and potato. The radial basis function (RBF) network with a Gaussian function was used in this study. The RBF employed the orthogonal least square learning method. When predictions of experimental data from MLR and ANN were compared, an agreement was found for ANN models than MLR models for SG than WL. The regression coefficient for determination (R2) for SG in MLR models was 0.31, and for ANN was 0.91. The R2 in MLR for WL was 0.89, whereas ANN was 0.84.Osmotic dehydration experiments found that the amount of WL and SG occurred in the following descending order: Golden Delicious apple > Cox apple > potato > banana. The effect of temperature and concentration of osmotic solution on WL and SG of the plant materials followed a descending order as: 55 > 40 > 32.2C and 70 > 60 > 50 > 40%, respectively.