5 resultados para assembly business modeling(ABM)
em Greenwich Academic Literature Archive - UK
Computational modeling techniques for reliability of electronic components on printed circuit boards
Resumo:
This paper describes modeling technology and its use in providing data governing the assembly and subsequent reliability of electronic chip components on printed circuit boards (PCBs). Products, such as mobile phones, camcorders, intelligent displays, etc., are changing at a tremendous rate where newer technologies are being applied to satisfy the demands for smaller products with increased functionality. At ever decreasing dimensions, and increasing number of input/output connections, the design of these components, in terms of dimensions and materials used, is playing a key role in determining the reliability of the final assembly. Multiphysics modeling techniques are being adopted to predict a range of interacting physics-based phenomena associated with the manufacturing process. For example, heat transfer, solidification, marangoni fluid flow, void movement, and thermal-stress. The modeling techniques used are based on finite volume methods that are conservative and take advantage of being able to represent the physical domain using an unstructured mesh. These techniques are also used to provide data on thermal induced fatigue which is then mapped into product lifetime predictions.
Resumo:
In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfill: the application and curing of the former can be undertaken before and during the reflow process. This advantage can be exploited to increase the flip-chip manufacturing throughput. However, adopting a no-flow underfill process may introduce reliability issues such as underfill entrapment, delamination at interfaces between underfill and other materials, and lower solder joint fatigue life. This paper presents an analysis on the assembly and the reliability of flip-chips with no-flow underfill. The methodology adopted in the work is a combination of experimental and computer-modeling methods. Two types of no-flow underfill materials have been used for the flip chips. The samples have been inspected with X-ray and scanning acoustic microscope inspection systems to find voids and other defects. Eleven samples for each type of underfill material have been subjected to thermal shock test and the number of cycles to failure for these flip chips have been found. In the computer modeling part of the work, a comprehensive parametric study has provided details on the relationship between the material properties and reliability, and on how underfill entrapment may affect the thermal–mechanical fatigue life of flip chips with no-flow underfill.
Resumo:
Today most of the IC and board designs are undertaken using two-dimensional graphics tools and rule checks. System-in-package is driving three-dimensional design concepts and this is posing a number of challenges for electronic design automation (EDA) software vendors. System-in-package requires three-dimensional EDA tools and design collaboration systems with appropriate manufacturing and assembly rules for these expanding technologies. Simulation and Analysis tools today focus on one aspect of the design requirement, for example, thermal, electrical or mechanical. System-in-Package requires analysis and simulation tools that can easily capture the complex three dimensional structures and provided integrated fast solutions to issues such as thermal management, reliability, electromagnetic interference, etc. This paper discusses some of the challenges faced by the design and analysis community in providing appropriate tools to engineers for System-in-Package design
Resumo:
This paper presents the results of a packaging process based on the stencil printing of isotropic conductive adhesives (ICAs) that form the interconnections of flip-chip bonded electronic packages. Ultra-fine pitch (sub-100-mum), low temperature (100degC), and low cost flip-chip assembly is demonstrated. The article details recent advances in electroformed stencil manufacturing that use microengineering techniques to enable stencil fabrication at apertures sizes down to 20mum and pitches as small as 30mum. The current state of the art for stencil printing of ICAs and solder paste is limited between 150-mum and 200-mum pitch. The ICAs-based interconnects considered in this article have been stencil printed successfully down to 50-mum pitch with consistent printing demonstrated at 90-mum pitch size. The structural integrity or the stencil after framing and printing is also investigated through experimentation and computational modeling. The assembly of a flip-chip package based on copper column bumped die and ICA deposits stencil printed at sub-100-mum pitch is described. Computational fluid dynamics modeling of the print performance provides an indicator on the optimum print parameters. Finally, an organic light emitting diode display chip is packaged using this assembly process
Resumo:
Solder paste is the most important strategic bonding material used in the assembly of surface mount devices in electronic industries. It is known to exhibit a thixotropic behavior, which is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterization of this time-dependent rheological behavior of solder pastes is crucial for establishing the relationships between the pastes structure and flow behavior; and for correlating the physical parameters with paste printing performance. In this article, we present a novel method which has been developed for characterizing the time-dependent and non-Newtonian rheological behavior of solder pastes and flux mediums as a function of shear rates. We also present results of the study of the rheology of the solder pastes and flux mediums using the structural kinetic modeling approach, which postulates that the network structure of solder pastes breaks down irreversibly under shear, leading to time and shear-dependent changes in the flow properties. Our results show that for the solder pastes used in the study, the rate and extent of thixotropy was generally found to increase with increasing shear rate. The technique demonstrated in this study has wide utility for R&D personnel involved in new paste formulation, for implementing quality control procedures used in solder-paste manufacture and packaging; and for qualifying new flip-chip assembly lines.