3 resultados para approach speed

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The issues surrounding collision of projectiles with structures has gained a high profile since the events of 11th September 2001. In such collision problems, the projectile penetrates the stucture so that tracking the interface between one material and another becomes very complex, especially if the projectile is essentially a vessel containing a fluid, e.g. fuel load. The subsequent combustion, heat transfer and melting and re-solidification process in the structure render this a very challenging computational modelling problem. The conventional approaches to the analysis of collision processes involves a Lagrangian-Lagrangian contact driven methodology. This approach suffers from a number of disadvantages in its implementation, most of which are associated with the challenges of the contact analysis component of the calculations. This paper describes a 'two fluid' approach to high speed impact between solid structures, where the objective is to overcome the problems of penetration and re-meshing. The work has been carried out using the finite volume, unstructured mesh multi-physics code PHYSICA+, where the three dimensional fluid flow, free surface, heat transfer, combustion, melting and re-solidification algorithms are approximated using cell-centred finite volume, unstructured mesh techniques on a collocated mesh. The basic procedure is illustrated for two cases of Newtonian and non-Newtonian flow to test various of its component capabilities in the analysis of problems of industrial interest.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Particle degradation can be a significant issue in particulate solids handling and processing, particularly in pneumatic conveying systems, in which high-speed impact is usually the main contributory factor leading to changes in particle size distribution (comparing the material to its virgin state). However, other factors may strongly influence particles breakage as well, such as particle concentrations, bend geometry,and hardness of pipe material. Because of such complex influences, it is often very difficult to predict particle degradation accurately and rapidly for industrial processes. In this article, a general method for evaluating particle degradation due to high-speed impacts is described, in which the breakage properties of particles are quantified using what are known as "breakage matrices". Rather than a pilot-size test facility, a bench-scale degradation tester has been used. Some advantages of using the bench-scale tester are briefly explored. Experimental determination of adipic acid has been carried out for a range of impact velocities in four particle size categories. Subsequently, particle breakage matrices of adipic acid have been established for these impact velocities. The experimental results show that the "breakage matrices" of particles is an effective and easy method for evaluation of particle degradation due to high-speed impacts. The possibility of the "breakage matrices" approach being applied to a pneumatic conveying system is also explored by a simulation example.