7 resultados para applications in logistics

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

YCY pincer palladacycles, where YCY is typically an SCS, NCN, PCP, SeCSe anionic six-electron donor ligand (e.g. see 1-6, Scheme 1.1), are a well-established family of organometallic complexes with manifold applications in catalysis, synthesis and materials science [1-24]. Their synthesis can be achieved by many routes including C-H activation, oxidative addition, transmetalation and trans-cyclopalladation [25].

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Computational Fluid Dynamics (CFD) is gradually becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However the mathematical modelling of the erratic turbulent motion remains the key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt changes in the turbulent energy and other parameters situated at near wall regions a particularly fine mesh is necessary which inevitably increases the computer storage and run-time requirements. Turbulence modelling can be considered to be one of the three key elements in CFD. Precise mathematical theories have evolved for the other two key elements, grid generation and algorithm development. The principal objective of turbulence modelling is to enhance computational procedures of efficient accuracy to reproduce the main structures of three dimensional fluid flows. The flow within an electronic system can be characterized as being in a transitional state due to the low velocities and relatively small dimensions encountered. This paper presents simulated CFD results for an investigation into the predictive capability of turbulence models when considering both fluid flow and heat transfer phenomena. Also a new two-layer hybrid kε / kl turbulence model for electronic application areas will be presented which holds the advantages of being cheap in terms of the computational mesh required and is also economical with regards to run-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The pseudo-spectral solution method offers a flexible and fast alternative to the more usual finite element/volume/difference methods, particularly when the long-time transient behaviour of a system is of interest. Since the exact solution is obtained at the grid collocation points superior accuracy can be achieved on modest grid resolution. Furthermore, the grid can be freely adapted with time and in space, to particular flow conditions or geometric variations. This is especially advantageous where strongly coupled, time-dependent, multi-physics solutions are investigated. Examples include metallurgical applications involving the interaction of electromagnetic fields and conducting liquids with a free sutface. The electromagnetic field then determines the instantaneous liquid volume shape and the liquid shape affects in turn the electromagnetic field. In AC applications a thin "skin effect" region results on the free surface that dominates grid requirements. Infinitesimally thin boundary cells can be introduced using Chebyshev polynomial expansions without detriment to the numerical accuracy. This paper presents a general methodology of the pseudo-spectral approach and outlines the solution procedures used. Several instructive example applications are given: the aluminium electrolysis MHD problem, induction melting and stirring and the dynamics of magnetically levitated droplets in AC and DC fields. Comparisons to available analytical solutions and to experimental measurements will be discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Solder paste is the most widely used bonding material in the assembly of surface mount devices in electronic industries. It generally has a flocculated structure (show aggregation of solder particles), and hence are known to exhibit a thixotropic behavior. This is recognized by the decrease in apparent viscosity of paste material with time when subjected to a constant shear rate. The proper characterisation of this timedependent rheological behaviour of solder pastes is crucial for establishing the relationships between the pastes’ structure and flow behaviour; and for correlating the physical parameters with paste printing performance. In this paper, we present a novel method which has been developed for characterising the timedependent and non-Newtonian rheological behaviour of solder pastes as a function of shear rates. The objective of the study reported in this paper is to investigate the thixotropic build-up behaviour of solder pastes. The stretched exponential model(SEM) has been used to model the structural changes during the build-up process and to correlate model parameters with the paste printing process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Thermosetting polymer materials are widely utilised in modern microelectronics packaging technology. These materials are used for a number of functions, such as for device bonding, for structural support applications and for physical protection of semiconductor dies. Typically, convection heating systems are used to raise the temperature of the materials to expedite the polymerisation process. The convection cure process has a number of drawbacks including process durations generally in excess of 1 hour and the requirement to heat the entire printed circuit board assembly, inducing thermomechanical stresses which effect device reliability. Microwave energy is able to raise the temperature of materials in a rapid, controlled manner. As the microwave energy penetrates into the polymer materials, the heating can be considered volumetric – i.e. the rate of heating is approximately constant throughout the material. This enables a maximal heating rate far greater than is available with convection oven systems which only raise the surface temperature of the polymer material and rely on thermal conductivity to transfer heat energy into the bulk. The high heating rate, combined with the ability to vary the operating power of the microwave system, enables the extremely rapid cure processes. Microwave curing of a commercially available encapsulation material has been studied experimentally and through use of numerical modelling techniques. The material assessed is Henkel EO-1080, a single component thermosetting epoxy. The producer has suggested three typical convection oven cure options for EO1080: 20 min at 150C or 90 min at 140C or 120 min at 110C. Rapid curing of materials of this type using advanced microwave systems, such as the FAMOBS system [1], is of great interest to microelectronics system manufacturers as it has the potential to reduce manufacturing costs, increase device reliability and enables new device designs. Experimental analysis has demonstrated that, in a realistic chip-on-board encapsulation scenario, the polymer material can be fully cured in approximately one minute. This corresponds to a reduction in cure time of approximately 95 percent relative to the convection oven process. Numerical assessment of the process [2] also suggests that cure times of approximately 70 seconds are feasible whilst indicating that the decrease in process duration comes at the expense of variation in degree of cure within the polymer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rule testing in transport scheduling is a complex and potentially costly business problem. This paper proposes an automated method for the rule-based testing of business rules using the extensible Markup Language for rule representation and transportation. A compiled approach to rule execution is also proposed for performance-critical scheduling systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.