8 resultados para applicant pool
em Greenwich Academic Literature Archive - UK
Resumo:
This paper presents the computational modelling of welding phenomena within a versatile numerical framework. The framework embraces models from both the fields of computational fluid dynamics (CFD) and computational solid mechanics (CSM). With regard to the CFD modelling of the weld pool fluid dynamics, heat transfer and phase change, cell-centred finite volume (FV) methods are employed. Additionally, novel vertex-based FV methods are employed with regard to the elasto-plastic deformation associated with the CSM. The FV methods are included within an integrated modelling framework, PHYSICA, which can be readily applied to unstructured meshes. The modelling techniques are validated against a variety of reference solutions.
Resumo:
A 3D model of melt pool created by a moving arc type heat sources has been developed. The model solves the equations of turbulent fluid flow, heat transfer and electromagnetic field to demonstrate the flow behaviour phase-change in the pool. The coupled effects of buoyancy, capillary (Marangoni) and electromagnetic (Lorentz) forces are included within an unstructured finite volume mesh environment. The movement of the welding arc along the workpiece is accomplished via a moving co-ordinator system. Additionally a method enabling movement of the weld pool surface by fluid convection is presented whereby the mesh in the liquid region is allowed to move through a free surface. The surface grid lines move to restore equilibrium at the end of each computational time step and interior grid points then adjust following the solution of a Laplace equation.
Resumo:
In recognition of the differences of scale between the welding pool and the heat affected zone along the welding line on one hand, and the overall size of the components being welded on the other, a local-global finite element approach was developed for the evaluation of distortions in laser welded shipbuilding parts. The approach involves the tandem use of a 'local' and a 'global' step. The local step involves a three-dimensional finite element model for the simulation of the laser welding process using the Sysweld finite element code, which takes into account thermal, metallurgical, and mechanical aspects. The simulation of the laser welding process was performed using a non-linear heat transfer analysis, based on a keyhole formation model, and a coupled transient thermomechanical analysis, which takes into account metallurgical transformations using the temperature dependent material properties and the continuous cooling transformation diagram. The size and shape of the keyhole used in the local finite element analysis was evaluated using a keyhole formation model and the Physica finite volume code. The global step involves the transfer of residual plastic strains and the stiffness of the weld obtained from the local model to the global analysis, which then provides the predicted distortions for the whole part. This newly developed methodology was applied to the evaluation of global distortions due to laser welding of stiffeners on a shipbuilding part. The approach has been proved reliable in comparison with experiments and of practical industrial use in terms of computing time and storage.
Resumo:
Vacuum arc remelting (VAR) aims at production of high quality, segregation-free alloys. The quality of the produced ingots depends on the operating conditions which could be monitored and analyzed using numerical modelling. The remelting process uniformity is controlled by critical medium scale time variations of the order 1-100 s, which are physically initiated by the droplet detachment and the large scale arc motion at the top of liquid pool [1,2]. The newly developed numerical modelling tools are addressing the 3-dimensional magnetohydrodynamic and thermal behaviour in the liquid zone and the adjacent ingot, electrode and crucible.
Resumo:
A multiscale model for the Vacuum Arc Remelting process (VAR) was developed to simulate dendritic microstructures during solidification and investigate the onset of freckle formation. On the macroscale, a 3D multi-physics model of VAR was used to study complex physical phenomena, including liquid metal flow with turbulence, heat transfer, and magnetohydrodynamics. The results showed that unsteady fluid flow in the liquid pool caused significant thermal perturbation at the solidification front. These results were coupled into a micromodel to simulate dendritic growth controlled by solute diffusion, including local remelting. The changes in Rayleigh number as the microstructure remelts was quantified to provide an indicator of when fluid flow channels (i.e. freckles) will initiate in the mushy zone. By examining the simulated microstructures, it was found that the Rayleigh number increased more than 300 times during remelting, which suggests that thermal perturbation could be responsible for the onset of freckle formation.
Resumo:
A 3D time-dependent model of the VAR process has been developed using CFD techniques. The model solves the coupled field equations for fluid flow, heat transfer (including phase change) and electromagnetic field, for both the electrode and the ingot. The motion of the electic arc 'preferred spot' can be specified based on observations. Correlations are sought between the local gap height, resulting from instantaneous liquid pool surface shape and electrode tip shape, and the arc motion. The detailed behaviour of the melting film on the electrode tip is studies using a spectral free surface technique, which allows investigation of the drops' detachment and drip shorts.
Resumo:
Newly developed numerical modelling tools are described, which address the 3-dimensional (3D) time-dependent magnetohydrodynamic and thermal behaviour in the liquid pool zone in the adjacent ingot, electrode and crucible. The melting electrode film flow and the droplet detachment initiation are simulated separately by an axisymmetric transient model.
Resumo:
Water operators need to be efficient, accountable, honest public institutions providing a universal service. Many water services however lack the institutional strength, the human resources, the technical expertise and equipment, or the financial or managerial capacity to provide these services. They need support to develop these capacities. The vast majority of water operators in the world are in the public sector – 90% of all major cities are served by such bodies. This means that the largest pool of experience and expertise, and the great majority of examples of good practice and sound institutions, are to be found in existing public sector water operators. Because they are public sector, however, they do not have any natural commercial incentive to provide international support. Their incentive stems from solidarity, not profit. Since 1990, however, the policies of donors and development banks have focussed on the private companies and their incentives. The vast resources of the public sector have been overlooked, even blocked by pro-private policies. Out of sight of these global policy-makers, however, a growing number of public sector water companies have been engaged, in a great variety of ways, in helping others develop the capacity to be effective and accountable public services. These supportive arrangements are now called 'public-public partnerships' (PUPs). A public-public partnership (PUP) is simply a collaboration between two or more public authorities or organisations, based on solidarity, to improve the capacity and effectiveness of one partner in providing public water or sanitation services. They have been described as: “a peer relationship forged around common values and objectives, which exclude profit-seeking”.1 Neither partner expects a commercial profit, directly or indirectly. This makes PUPs very different from the public–private partnerships (PPPs) which have been promoted by the international financial institutions (IFIs) like the World Bank. The problems of PPPs have been examined in a number of reports. A great advantage of PUPs is that they avoid the risks of such partnerships: transaction costs, contract failure, renegotiation, the complexities of regulation, commercial opportunism, monopoly pricing, commercial secrecy, currency risk, and lack of public legitimacy.2 PUPs are not merely an abstract concept. The list in the annexe to this paper includes over 130 PUPs in around 70 countries. This means that far more countries have hosted PUPs than host PPPs in water – according to a report from PPIAF in December 2008, there are only 44 countries with private participation in water. These PUPs cover a period of over 20 years, and been used in all regions of the world. The earliest date to the 1980s, when the Yokohama Waterworks Bureau first started partnerships to help train staff in other Asian countries. Many of the PUP projects have been initiated in the last few years, a result of the growing recognition of PUPs as a tool for achieving improvements in public water management. This paper attempts to provide an overview of the typical objectives of PUPs; the different forms of PUPs and partners involved; a series of case studies of actual PUPs; and an examination of the recent WOPs initiative. It then offers recommendations for future development of PUPs.