8 resultados para adhesive resin
em Greenwich Academic Literature Archive - UK
Resumo:
The stencil printing process is an important process in the assembly of Surface Mount Technology (SMT)devices. There is a wide agreement in the industry that the paste printing process accounts for the majority of assembly defects. Experience with this process has shown that typically over 60% of all soldering defects are due to problems associated with the flow properties of solder pastes. Therefore, the rheological measurements can be used as a tool to study the deformation or flow experienced by the pastes during the stencil printing process. This paper presents results on the thixotropic behaviour of three pastes; lead-based solder paste, lead-free solder paste and isotropic conductive adhesive (ICA). These materials are widely used as interconnect medium in the electronics industry. Solder paste are metal alloys suspended in a flux medium while the ICAs consist of silver flakes dispersed in an epoxy resin. The thixotropy behaviour was investigated through two rheological test; (i) hysteresis loop test and (ii) steady shear rate test. In the hysteresis loop test, the shear rate were increased from 0.001 to 100s-1 and then decreased from 100 to 0.001s-1. Meanwhile, in the steady shear rate test, the materials were subjected to a constant shear rate of 0.100, 100 and 0.001s-1 for a period of 240 seconds. All the pastes showed a high degree of shear thinning behaviour with time. This might be due to the agglomeration of particles in the flux or epoxy resin that prohibits pastes flow under low shear rate. The action of high shear rate would break the agglomerates into smaller pieces which facilitates the flow of pastes, thus viscosity is reduced at high shear rate. The solder pastes exhibited a higher degree of structural breakdown compared to the ICAs. The area between the up curve and down curve in the hysteresis curve is an indication of the thixotropic behavior of the pastes. Among the three pastes, lead-free solder paste showed the largest area between the down curve and up curve, which indicating a larger structural breakdown in the pastes, followed by lead-based solder paste and ICA. In a steady shear rate test, viscosity of ICA showed the best recovery with the steeper curve to its original viscosity after the removal of shear, which indicating that the dispersion quality in ICA is good because the high shear has little effect on the microstructure of ICA. In contrast, lead-based paste showed the poorest recovery which means this paste undergo larger structural breakdown and dispersion quality in this paste is poor because the microstructure of the paste is easily disrupted by high shear. The structural breakdown during the application of shear and the recovery after removal of shear is an important characteristic in the paste printing process. If the paste’s viscosity can drop low enough, it may contribute to the aperture filling and quick recovery may prevent slumping.
Resumo:
The curing of conductive adhesives and underfills can save considerable time and offer cost benefits for the microsystems and electronics packaging industry. In contrast to conventional ovens, curing by microwave energy generates heat internally within each individual component of an assembly. The rate at which heat is generated is different for each of the components and depends on the material properties as well as the oven power and frequency. This leads to a very complex and transient thermal state, which is extremely difficult to measure experimentally. Conductive adhesives need to be raised to a minimum temperature to initiate the cross-linking of the resin polymers, whilst some advanced packaging materials currently under investigation impose a maximum temperature constraint to avoid damage. Thermal imagery equipment integrated with the microwave oven can offer some information on the thermal state but such data is based on the surface temperatures. This paper describes computational models that can simulate the internal temperatures within each component of an assembly including the critical region between the chip and substrate. The results obtained demonstrate that due to the small mass of adhesive used in the joints, the temperatures reached are highly dependent on the material properties of the adjacent chip and substrate.
Resumo:
Flip chip interconnections using anisotropic conductive film (ACF) are now a very attractive technique for electronic packaging assembly. Although ACF is environmentally friendly, many factors may influence the reliability of the final ACF joint. External mechanical loading is one of these factors. Finite element analysis (FEA) was carried out to understand the effect of mechanical loading on the ACF joint. A 3-dimensional model of adhesively bonded flip chip assembly was built and simulations were performed for the 3-point bending test. The results show that the stress at its highest value at the corners, where the chip and ACF were connected together. The ACF thickness was increased at these corner regions. It was found that higher mechanical loading results in higher stress that causes a greater gap between the chip and the substrate at the corner position. Experimental work was also carried out to study the electrical reliability of the ACF joint with the applied bending load. As per the prediction from FEA, it was found that at first the corner joint failed. Successive open joints from the corner towards the middle were also noticed with the increase of the applied load.
Resumo:
Using thermosetting epoxy based conductive adhesive films for the flip chip interconnect possess a great deal of attractions to the electronics manufacturing industries due to the ever increasing demands for miniaturized electronic products. Adhesive manufacturers have taken many attempts over the last decade to produce a number of types of adhesives and the coupled anisotropic conductive-nonconductive adhesive film is one of them. The successful formation of the flip chip interconnection using this particular type of adhesive depends on, among factors, how the physical properties of the adhesive changes during the bonding process. Experimental measurements of the temperature in the adhesive have revealed that the temperature becomes very close to the required maximum bonding temperature within the first 1s of the bonding time. The higher the bonding temperature the faster the ramp up of temperature is. A dynamic mechanical analysis (DMA) has been carried out to investigate the nature of the changes of the physical properties of the coupled anisotropic conductive-nonconductive adhesive film for a range of bonding parameters. Adhesive samples that are pre-cured at 170, 190 and 210°C for 3, 5 and 10s have been analyzed using a DMA instrument. The results have revealed that the glass transition temperature of this type of adhesive increases with the increase in the bonding time for the bonding temperatures that have been used in this work. For the curing time of 3 and 5s, the maximum glass transition temperature increases with the increase in the bonding temperature, but for the curing time of 10s the maximum glass transition temperature has been observed in the sample which is cured at 190°C. Based on these results it has been concluded that the optimal bonding temperature and time for this kind of adhesive are 190°C and 10s, respectively.
Resumo:
The aim of the current study was the development of theophylline buccal adhesive tablets using direct compression. Buccal adhesive formulations were developed using a water soluble resin with various combinations of mucoadhesive polymers. The prepared theophylline tablets were evaluated for tensile strength, swelling capacity and ex vivo mucoadhesion performance. Ex vivo mucoadhesion was assessed using porcine gingival tissue and the peak detachment forces were found to be suitable for a buccal adhesive tablet with a maximum of 1.5N approximately. The effect of formulation composition on the release pattern was also investigated. Most formulations showed theophylline controlled release profiles depended on the grade and polymer ratio. The release mechanisms were found to fit Peppas' kinetic model over a period of 5h. In general the majority of the developed formulations presented suitable adhesion and controlled drug release. Copyright © 2010 Elsevier B.V. All rights reserved.
Resumo:
OBJECTIVES: The biological effects of resin-modified glass-ionomer cements as used in clinical dentistry are described, and the literature reviewed on this topic. METHODS: Information on resin-modified glass-ionomers and on 2-hydroxyethyl methacrylate (HEMA), the most damaging substance released by these materials, has been collected from over 50 published papers. These were mainly identified through Scopus. RESULTS: HEMA is known to be released from these materials and has a variety of damaging biological properties, ranging from pulpal inflammation to allergic contact dermatitis. These are therefore potential hazards from resin-modified glass-ionomers. However, clinical results with these materials that have been reported to date are generally positive. CONCLUSIONS/SIGNIFICANCE: Resin-modified glass-ionomers cannot be considered biocompatible to nearly the same extent as conventional glass-ionomers. Care needs to be taken with regard to their use in dentistry and, in particular, dental personnel may be at risk from adverse effects such as contact dermatitis and other immunological responses.
Resumo:
Water uptake and water loss have been studied in a commercial resin-modified glass-ionomer cement, Fuji II LC, under a variety of conditions. Uptake was generally non-Fickian, but affected by temperature. At room temperature, the equilibrium water uptake values varied from 2.47 to 2.78% whereas at low temperature (12 degrees C), it varied from 0.85 to 1.18%. Cure time affected uptake values significantly. Water uptake was much lower than in conventional glass-ionomer restorative cements exposed to water vapor. Loss of water under desiccating conditions was found to be Fickian for the first 5 h loss at both 22 and 12 degrees C. Diffusion coefficients were between 0.45 and 0.76 x 10( -7) cm(2)/s, with low temperature diffusion coefficients slightly greater than those at room temperature. Plotting water loss as percentage versus s(-(1/2)) allowed activation energies to be determined from the Arrhenius equation and these were found to be 65.6, 79.8, and 7.7 kJ/mol respectively for 30, 20, and 10 s cure times. The overall conclusion is that the main advantage of incorporating HEMA into resin-modified-glass-ionomers is to alter water loss behavior. Rate of water loss and total amount lost are both reduced. Hence, resin-modified glass-ionomers are less sensitive to water loss than conventional glass-ionomers.