7 resultados para ac biasing
em Greenwich Academic Literature Archive - UK
Resumo:
This work presents computation analysis of levitated liquid thermal and flow fields with free surface oscillations in AC and DC magnetic fields. The volume electromagnetic force distribution is continuously updated with the shape and position change. The oscillation frequency spectra are analysed for droplets levitation against gravity in AC and DC magnetic fields at various combinations. For larger volume liquid metal confinement and melting the semi-levitation induction skull melting process is simulated with the same numerical model. Applications are aimed at pure electromagnetic material processing techniques and the material properties measurements in uncontaminated conditions.
Resumo:
The presented numerical modelling for the magnetic levitation involves coupling of the electromagnetic field, liquid shape change, fluid velocities and the temperature field at every time step during the simulation in time evolution. Combination of the AC and DC magnetic fields can be used to achieve high temperature, stable levitation conditions. The oscillation frequency spectra are analysed for droplets levitated in AC and DC magnetic fields at various combinations. An electrically poorly conducting, diamagnetic droplet (e.g. water) can be stably levitated using the dia- and para-magnetic properties of the sample material in a high intensity, gradient DC field.
Resumo:
Cold crucible furnace is widely used for melting reactive metals for high quality castings. Although the water cooled copper crucible avoids contamination, it produces a low superheat of the melt. Experimental and theoretical investigations of the process showed that the increase of the supplied power to the furnace leads to a saturation in the temperature rise of the melt, and no significant increase of the melt superheat can be obtained. The computer model of theprocess has been developed to simulate the time dependent turbulent flow, heat transfer with phase change, and AC and DC magnetohydrodynamics in a time varying liquid metal envelope. The model predicts that the supermimposition of a strong DC field on top of the normal AC field reduces the level of turbulience and stirring in the liquid metal, thereby reducing the heat loss through the base of the crucible and increasing the superheat. The direct measurements of the temperature in the commercial size cold crucbile has confirmed the computer redictions and showed that the addition of a DC field increased the superheat in molten TiAl from ~45C (AC field only) to ~81C (DC+AC fields). The present paper reports further predictions of the effect of a dDC field on top of the AC field and compares these with experimental data.
Resumo:
A method of droplet generation based on applying a modulated AC high frequency magnetic field in the localized region of capillary breakup is considered as ans alternative to traditional methods for high temperature liquid melt droplet serial production by pressure variation. The method is based on a pseudo-spectral approximation with a coordinate transformation adaptin to the developing free surface. The electromagnetic field is recomputed continuously with the domain shape change. Practical application cases for liquid silicon droplets of 0.5 - 2 mm diameter are considered in detail.
Resumo:
Electromagnetic Levitation (EML) is a valuable method for measuring the thermo-physical properties of metals - surface tensions, viscosity, thermal/electrical conductivity, specific heat, hemispherical emissivity, etc. – beyond their melting temperature. In EML, a small amount of the test specimen is melted by Joule heating in a suspended AC coil. Once in liquid state, a small perturbation causes the liquid envelope to oscillate and the frequency of oscillation is then used to compute its surface tension by the well know Rayleigh formula. Similarly, the rate at which the oscillation is dampened relates to the viscosity. To measure thermal conductivity, a sinusoidally varying laser source may be used to heat the polar axis of the droplet and the temperature response measured at the polar opposite – the resulting phase shift yields thermal conductivity. All these theoretical methods assume that convective effects due to flow within the droplet are negligible compared to conduction, and similarly that the flow conditions are laminar; a situation that can only be realised under microgravity conditions. Hence the EML experiment is the method favoured for Spacelab experiments (viz. TEMPUS). Under terrestrial conditions, the full gravity force has to be countered by a much larger induced magnetic field. The magnetic field generates strong flow within the droplet, which for droplets of practical size becomes irrotational and turbulent. At the same time the droplet oscillation envelope is no longer ellipsoidal. Both these conditions invalidate simple theoretical models and prevent widespread EML use in terrestrial laboratories. The authors have shown in earlier publications that it is possible to suppress most of the turbulent convection generated in the droplet skin layer, through use of a static magnetic field. Using a pseudo-spectral discretisation method it is possible compute very accurately the dynamic variation in the suspended fluid envelope and simultaneously compute the time-varying electromagnetic, flow and thermal fields. The use of a DC field as a dampening agent was also demonstrated in cold crucible melting, where suppression of turbulence was achieved in a much larger liquid metal volume and led to increased superheat in the melt and reduction of heat losses to the water-cooled walls. In this paper, the authors describe the pseudo-spectral technique as applied to EML to compute the combined effects of AC and DC fields, accounting for all the flow-induced forces acting on the liquid volume (Lorentz, Maragoni, surface tension, gravity) and show example simulations.
Resumo:
Electromagnetic levitation of liquid metal droplets can be used to measure the properties of highly reactive liquid materials. Two independent numerical models, the commercial COMSOL and the spectral-collocation based free surface code SPHINX, have been applied to solve the transient electromagnetic, fluid flow and thermodynamic equations, which describe the levitated liquid motion and heating processes. The SPHINX model incorporates free surface deformation to accurately model the oscillations that result from the interaction between the electromagnetic and gravity forces, temperature dependent surface tension, magnetically controlled turbulent momentum transport. The models are adapted to incorporate periodic laser heating at the top of the droplet, which is used to measure the thermal conductivity of the material. Novel effects in the levitated droplet of magnetically damped turbulence and nonlinear growth of velocities in high DC magnetic field are analysed.
Resumo:
The intense AC magnetic field required to produce levitation in terrestrial conditions, along with the buoyancy and thermo-capillary forces, results in turbulent convective flow within the droplet. The use of a homogenous DC magnetic field allows the convective flow to be damped. However the turbulence properties are affected at the same time, leading to a possibility that the effective turbulent damping is considerably reduced. The MHD modified K-Omega turbulence model allows the investigation of the effect of magnetic field on the turbulence. The model incorporates free surface deformation, the temperature dependent surface tension, turbulent momentum transport, electromagnetic and gravity forces. The model is adapted to incorporate a periodic laser heating at the top of the droplet, which have been used to measure the thermal conductivity of the material by calculating the phase lag between the frequency of the laser heating and the temperature response at the bottom. The numerical simulations show that with the gradual increase of the DC field the fluid flow within the droplet is initially increasing in intensity. Only after a certain threshold magnitude of the field the flow intensity starts to decrease. In order to achieve the flow conditions close to the ‘laminar’ a D.C. magnetic field >4 Tesla is required to measure the thermal conductivity accurately. The reduction in the AC field driven flow in the main body of the drop leads to a noticeable thermo-capillary convection at the edge of the droplet. The uniform vertical DC magnetic field does not stop a translational oscillation of the droplet along the field, which is caused by the variation in total levitation force due to the time-dependent surface deformation.