11 resultados para a versatile technique for

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is widely accepted that volumetric contraction and solidification during the polymerization process of restorative composites in combination with bonding to the hard tissue result in stress transfer and inward deformation of the cavity walls of the restored tooth. Deformation of the walls decreases the size of the cavity during the filling process. This fact has a profound influence on the assumption-raised and discussed in this paper-that an incremental filling technique reduces the stress effect of composite shrinkage on the tooth. Developing stress fields for different incremental filling techniques are simulated in a numerical analysis. The analysis shows that, in a restoration with a well-established bond to the tooth-as is generally desired-incremental filling techniques increase the deformation of the restored tooth. The increase is caused by the incremental deformation of the preparation, which effectively decreases the total amount of composite needed to fill the cavity. This leads to a higher-stressed tooth-composite structure. The study also shows that the assessment of intercuspal distance measurements as well as simplifications based on generalization of the shrinkage stress state cannot be sufficient to characterize the effect of polymerization shrinkage in a tooth-restoration complex. Incremental filling methods may need to be retained for reasons such as densification, adaptation, thoroughness of cure, and bond formation. However, it is very difficult to prove that incrementalization needs to be retained because of the abatement of shrinkage effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main goal of a cell stability MHD model like MHD-Valdis is to help locate the busbars around the cell in a way which leads to the generation of a magnetic field inside the cell that itself leads to a stable cell operation. Yet as far as the cell stability is concerned, the uniformity of the current density in the metal pad is also extremely important and can only be achieved with a correct busbar network sizing. This work compares the usage of a detailed ANSYS based 3D thermo-electric model with the one of the versatile 1D part of MHD-Valdis to help design a well balanced busbar network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the use of the acoustic emission (AE) monitoring technique for use in identifying the damage mechanisms present in paper associated with its production process. The microscopic structure of paper consists of a random mesh of paper fibres connected by hydrogen bonds. This implies the existence of two damage mechanisms, the failure of a fibre-fibre bond and the failure of a fibre. This paper describes a hybrid mathematical model which couples the mechanics of the mass-spring model to the acoustic wave propagation model for use in generating the acoustic signal emitted by complex structures of paper fibres under strain. The derivation of the mass-spring model can be found in [1,2], with details of the acoustic wave equation found in [3,4]. The numerical implementation of the vibro-acoustic model is discussed in detail with particular emphasis on the damping present in the numerical model. The hybrid model uses an implicit solver which intrinsically introduces artificial damping to the solution. The artificial damping is shown to affect the frequency response of the mass-spring model, therefore certain restrictions on the simulation time step must be enforced so that the model produces physically accurate results. The hybrid mathematical model is used to simulate small fibre networks to provide information on the acoustic response of each damage mechanism. The simulated AEs are then analysed using a continuous wavelet transform (CWT), described in [5], which provides a two dimensional time-frequency representation of the signal. The AEs from the two damage mechanisms show different characteristics in the CWT so that it is possible to define a fibre-fibre bond failure by the criteria listed below. The dominant frequency components of the AE must be at approximately 250 kHz or 750 kHz. The strongest frequency component may be at either approximately 250 kHz or 750 kHz. The duration of the frequency component at approximately 250 kHz is longer than that of the frequency component at approximately 750 kHz. Similarly, the criteria for identifying a fibre failure are given below. The dominant frequency component of the AE must be greater than 800 kHz. The duration of the dominant frequency component must be less than 5.00E-06 seconds. The dominant frequency component must be present at the front of the AE. Essentially, the failure of a fibre-fibre bond produces a low frequency wave and the failure of a fibre produces a high frequency pulse. Using this theoretical criteria, it is now possible to train an intelligent classifier such as the Self-Organising Map (SOM) [6] using the experimental data. First certain features must be extracted from the CWTs of the AEs for use in training the SOM. For this work, each CWT is divided into 200 windows of 5E-06s in duration covering a 100 kHz frequency range. The power ratio for each windows is then calculated and used as a feature. Having extracted the features from the AEs, the SOM can now be trained, but care is required so that the both damage mechanisms are adequately represented in the training set. This is an issue with paper as the failure of the fibre-fibre bonds is the prevalent damage mechanism. Once a suitable training set is found, the SOM can be trained and its performance analysed. For the SOM described in this work, there is a good chance that it will correctly classify the experimental AEs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper introduces a framework for representing versatile temporal relationships between events and their effects. The framework is based on a simple time model which characterizes each time element as a subset of the set of real numbers and allows expression of both absolute time values and relative temporal relations. The formalism presented here formally specifies the so-called most general temporal constraint (GTC), which guarantees the common-sense assertion that “the beginning of the effect cannot precede the beginning of the cause”. It is shown that there are in fact 8 possible causal relationships which satisfy GTC, including cases where, on the one hand, effects start simultaneously with, during, immediately after, or some time after their causes, and on the other hand, events end before, simultaneously with, or after their causes. The causal relationships characterized in this paper are versatile enough to subsume those representatives in the literature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An aerodynamic sound source extraction from a general flow field is applied to a number of model problems and to a problem of engineering interest. The extraction technique is based on a variable decomposition, which results to an acoustic correction method, of each of the flow variables into a dominant flow component and a perturbation component. The dominant flow component is obtained with a general-purpose Computational Fluid Dynamics (CFD) code which uses a cell-centred finite volume method to solve the Reynolds-averaged Navier–Stokes equations. The perturbations are calculated from a set of acoustic perturbation equations with source terms extracted from unsteady CFD solutions at each time step via the use of a staggered dispersion-relation-preserving (DRP) finite-difference scheme. Numerical experiments include (1) propagation of a 1-D acoustic pulse without mean flow, (2) propagation of a 2-D acoustic pulse with/without mean flow, (3) reflection of an acoustic pulse from a flat plate with mean flow, and (4) flow-induced noise generated by the an unsteady laminar flow past a 2-D cavity. The computational results demonstrate the accuracy for model problems and illustrate the feasibility for more complex aeroacoustic problems of the source extraction technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes an autonomics development tool which serves as both a powerful and flexible policy-expression language and a policy-based framework that supports the integration and dynamic composition of several autonomic computing techniques including signal processing, automated trend analysis and utility functions. Each of these technologies has specific advantages and applicability to different types of dynamic adaptation. The AGILE platform enables seamless interoperability of the different technologies to each perform various aspects of self-management within a single application. Self-management behaviour is specified using the policy language semantics to bind the various technologies together as required. Since the policy semantics support run-time re-configuration, the self-management architecture is dynamically composable. The policy language and implementation library have integrated support for self-stabilising behaviour, enabling oscillation and other forms of instability to be handled at the policy level with very little effort on the part of the application developer. Example applications are presented to illustrate the integration of different autonomics techniques, and the achievement of dynamic composition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study attempts to characterise the electromyographic activity and kinematics exhibited during the performance of take-off for a pole vaulting short run-up educational exercise, for different expertise levels. Two groups (experts and novices) participated in this study. Both groups were asked to execute their take-off technique for that specific exercise. Among the kinematics variables studied, the knee, hip and ankle angles and the hip and knee angular velocities were significantly different. There were also significant differences in the EMG variables, especially in terms of (i) biceps femoris and gastrocnemius lateralis activity at touchdown and (ii) vastus lateralis and gastrocnemius lateralis activity during take-off. During touchdown, the experts tended to increase the stiffness of the take-off leg to decrease braking. Novices exhibited less stiffness in the take-off leg due to their tendency to maintain a tighter knee angle. Novices also transferred less energy forward during take-off due to lack of contraction in the vastus lateralis, which is known to contribute to forward energy transfers. This study highlights the differences in both groups in terms of muscular and angular control according to the studied variables. Such studies of pole vaulting could be useful to help novices to learn expert's technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A wide and versatile range of analytical techniques are routinely used, indeed are necessary, in pharmaceutical analysis. Over the past decade Raman spectroscopy has increasingly come to the fore as a valuable member of the arsenal of methods used, from both a fundamental and applied perspective, for the interrogation of solid, liquid and solution phase samples. Advances have occurred not only in instrumentation but also in fundamental techniques and applications. The method holds substantial potential for the investigation of, what are normally considered, problematic or challenging areas of analysis. The aforementioned areas include – but are, definitely not limited too reaction kinetics, pharmaceutical drug discovery, detection of counterfeit/adulterated/illegal drugs, trace analysis and uses for on-line pharmaceutical process manufacturing. This, the first of several articles on the use of Raman spectroscopic techniques in pharmaceutical analysis, provides an introductory overview of the theory of the technique.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An innovative methodology has been used for the formulation development of Cyclosporine A (CyA) nanoparticles. In the present study the static mixer technique, which is a novel method for producing nanoparticles, was employed. The formulation optimum was calculated by the modified Shepard's method (MSM), an advanced data analysis technique not adopted so far in pharmaceutical applications. Controlled precipitation was achieved injecting the organic CyA solution rapidly into an aqueous protective solution by means of a static mixer. Furthermore the computer based MSM was implemented for data analysis, visualization, and application development. For the optimization studies, the gelatin/lipoid S75 amounts and the organic/aqueous phase were selected as independent variables while the obtained particle size as a dependent variable. The optimum predicted formulation was characterized by cryo-TEM microscopy, particle size measurements, stability, and in vitro release. The produced nanoparticles contain drug in amorphous state and decreased amounts of stabilizing agents. The dissolution rate of the lyophilized powder was significantly enhanced in the first 2 h. MSM was proved capable to interpret in detail and to predict with high accuracy the optimum formulation. The mixer technique was proved capable to develop CyA nanoparticulate formulations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper concerns the use of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste and specifically, the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of paste materials at the molecular level. Ultrasonic techniques are a widely used and a reliable form of non-destructive testing of materials. This is because techniques such as ultrasounds while used for testing or monitoring material properties, has offered immense benefits in applications where access to the sample is restricted or when handling the sample for testing could interfere with the monitoring or analysis process. Very often, this would mean that the measurements taken are not a true representation of the behaviour of the material (due to externally incorporated changes into the material's physical state during the removal or testing process). Ultrasonic based techniques are being increasingly used for quality control and production monitoring functions which requires evaluation of the changes in material properties over wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough, and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capacity to take rapid measurements in systems which are optically opaque. The viscometer and rheometer are two of the most widely used rheological instruments used in industry for monitoring the quality of solder pastes, during the production and packaging stage. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. It is for these reasons that materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers) are keen to see the development of simple, easy to use and accurate techniques for the theological characterisation of solder pastes. The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the application of a non-destructive ultrasonic technique for characterising the rheological properties of solder paste through the use of through-mode microsecond ultrasonic pulses for evaluation of viscoelastic properties of lead-free solder paste containing different types of flux. Ultrasonic techniques offer a robust and reliable form of non-destructive testing of materials where access to the sample is restricted or when sample handling can interfere with the monitoring or analysis process due to externally incorporated changes to the material’s physical state or accidental contamination during the removal or testing process. Ultrasonic based techniques are increasingly used for quality control and production monitoring functions which requires evaluation of changes in material properties for a wide range of industrial applications such as cement paste quality, plastic/polymer extrusion process, dough and even sugar content in beverage drinks. In addition, ultrasound techniques are of great interest for their capability to take rapid measurements in systems which are optically opaque. The conventional industry approach for characterising the rheological properties of suspensions during processing/packaging stage is mainly through the use of viscometer and some through the use of rheometer. One of the potential limitations of viscometer and rheometer based measurements is that the collection and preparation of the solder paste samples can irreversibly alter the structure and flow behaviour of the sample. Hence the measurement may not represent the actual quality of the whole production batch. Secondly, rheological measurements and the interpretation of rheological data is a very technical and time consuming process, which requires professionally trained R&D personnel. The ultrasound technique being proposed provides simple, yet accurate and easy to use solution for the in-situ rheological characterisation of solder pastes which will benefit the materials suppliers (who formulate and produce solder pastes) and solder paste consumers (especially, contract electronics manufacturers). The results from the work show that the technique can be used by R&D personnel involved in paste formulation and manufacture to monitor the batch-to-batch quality and consistency.