6 resultados para Zinc diet
em Greenwich Academic Literature Archive - UK
Resumo:
The potential of employing zinc polycarboxylate dental cement as a controlled release material has been studied. Benzalkonium chloride was used as the active ingredient, and incorporated at concentrations of 1, 2 and 3% by mass within the cement. At these levels, there was no observable effect on the speed of setting. Release was followed using an ion-selective electrode to determine changes in chloride ion concentration with time. This technique showed that the additive was released when the cured cement was placed in water, with release occurring by a diffusion mechanism for the first 3 h, but continuing beyond that for up to 1 week. Diffusion coefficients were in the range 5.62 × 10(−6) cm(2) s(−1) (for 1% concentration) to 10.90 × 10(−6) cm(2) s(−1) (for 3% concentration). Up to 3% of the total loading of benzalkonium chloride was released from the zinc polycarboxylate after a week, which is similar to that found in previous studies with glass-ionomer cement. It is concluded that zinc polycarboxylate cement is capable of acting as a useful material for the controlled release of active organic compounds.
Resumo:
Wild leafy vegetables play a vital role in the livelihoods of many communities in Africa. The focus of this study was to investigate the nutritional value of wild vegetables commonly consumed by the people of Buhera District in the Manicaland province of Zimbabwe. A variety of vegetables including Amaranthus hybridus, Cleome gynandra, Bidens pilosa, Corchorus tridens, and Adansonia digitata were collected during a survey in Buhera District. Samples were processed employing traditional methods of cooking and drying, then subjected to proximate and micronutrient analyses. The results indicate that these vegetables were particularly high in calcium, iron, and vitamin C. Compared with Brassica napus (rape), Amaranthus hybridus contained twice the amount of calcium, with other nutrients almost in the same range. Compared with Spinacia oleracea (spinach), Amaranthus hybridus contained three times more vitamin C (44 mg/100 g). Calcium levels were 530 mg/100 g. Amaranthus hybridus was also found to contain 7, 13, and 20 times more vitamin C, calcium, and iron respectively compared with Lactuca sativa (lettuce). Cleome gynandra contained 14 mg/100 g, 115 mg/100 g, 9 mg/100 g of vitamin C, calcium, and iron respectively. Bidens pilosa was found to be a valuable source of vitamin C (63 mg/100 g), iron (15 mg/100 g), and zinc (19 mg/100 g), compared with Brassica oleracea (cabbage). The leaves of Corchorus tridens were an excellent source of vitamin C (78 mg/100 g), calcium (380 mg/100 g), and iron (8 mg/100 g). The Adansonia digitata leaves were also rich in vitamin C (55 mg/100 g), iron (23 mg/ 100 g), and calcium (400 mg/100 g). Based on these nutrient contents, the above vegetables will have potential benefits as part of feeding programmes, as well as their promotion as part of composite diet for vulnerable groups.
Resumo:
The water desorption behaviour of three different zinc oxide dental cements (two polycarboxylates, one phosphate) has been studied in detail. Disc-shaped specimens of each material were prepared and allowed to lose water by being subjected to a low humidity desiccating atmosphere over concentrated sulfuric acid. In all three cements, water loss was found to follow Fick's second law for at least 6 h (until M(t)/M(infinity) values were around 0.5), with diffusion coefficients ranging from 6.03 x 10(-8 )cm(2 )s(-1) (for the zinc phosphate) to 2.056 x 10(-7 )cm(2 )s(-1) (for one of the zinc polycarboxylates, Poly F Plus). Equilibration times for desorption were of the order of 8 weeks, and equilibrium water losses ranged from 7.1% for zinc phosphate to 16.9% and 17.4% for the two zinc polycarboxylates.
Resumo:
The ability of zinc oxide-based dental cements (zinc phosphate and zinc polycarboxylate) to take up fluoride from aqueous solution has been studied. Only zinc phosphate cement was found to take up any measurable fluoride after 5 h exposure to the solutions. The zinc oxide filler of the zinc phosphate also failed to take up fluoride from solution. The key interaction for this uptake was thus shown to involve the phosphate groups of the set cement. However, whether this took the form of phosphate/fluoride exchange, or the formation of oxyfluoro-phosphate groups was not clear. Fluoride uptake followed radicaltime kinetics for about 2 h in some cases, but was generally better modelled by the Elovich equation, dq(t)/dt = alpha exp(-beta q(t)). Values for alpha varied from 3.80 to 2.48 x 10(4), and for beta from 7.19 x 10(-3) to 0.1946, though only beta showed any sort of trend, becoming smaller with increasing fluoride concentration. Fluoride was released from the zinc phosphate cements in processes that were diffusion based up to M(t)/M(infinity) of about 0.4. No further release occurred when specimens were placed in fresh volumes of deionised water. Only a fraction of the fluoride taken up was re-released, demonstrating that most of the fluoride taken up becomes irreversibly bound within the cement.
Resumo:
The water uptake and water loss behaviour in three different formulations of zinc oxy-chloride cement have been studied in detail. Specimens of each material were subjected to a high humidity atmosphere (93% RH) over saturated aqueous sodium sulfate, and a low humidity desiccating atmosphere over concentrated sulfuric acid. In high humidity, the cement formulated from the nominal 75% ZnCl2 solutions gained mass, eventually becoming too sticky to weigh further. The specimens at 25% and 50% ZnCl2 by contrast lost mass by a diffusion process, though by 1 week the 50% cement had stated to gain mass and was also too sticky to weigh. In low humidity, all three cements lost mass, again by a diffusion process. Both water gain and water loss followed Fick's law for a considerable time. In the case of water loss under desiccating conditions, this corresponded to values of Mt/MĄ well above 0.5. However, plots did not go through the origin, showing that there was an induction period before true diffusion began. Diffusion coefficients varied from 1.56 x 10-5 (75% ZnCl2) to 2.75 x 10-5 cm2/s (50% ZnCl2), and appeared to be influenced not simply by composition. The drying of the 25% and 50% ZnCl2 cements in high humidity conditions occurred at a much lower rate, with a value of D of 2.5 x 10-8 cm2/s for the 25% ZnCl2 cement. This cement was found to equilibrate slowly, but total water loss did not differ significantly from that of the cements stored under desiccating conditions. Equilibration times for water loss in desiccating conditions were of the order of 2-4 hours, depending on ZnCl2 content; equilibrium water losses were respectively 28.8 [25% ZnCl2], 16.2 [50%] and 12.4 [75%] which followed the order of ZnCl2 content. It is concluded that the water transport processes are strongly influenced by the ZnCl2 content of the cement.
Resumo:
AIM: To examine the concentrations of zinc and omega-6 polyunsaturated fatty acids (omega-6 PUFAs) in breast milk, the impact of zinc on omega-6 PUFA metabolism, and the growth rate of infants. METHODS: Forty-one mother-term infant pairs from a rural area of northern Beijing, China, who were 1 month (n = 18, group I) and 3 months (n = 23, group II) old and exclusively breastfed, were studied. The dietary records and the concentrations of zinc and omega-6 PUFAs in the milk of lactating women and the increase in weight and length of their infants during 1 and 3 postnatal months were analysed. RESULTS: The dietary intakes of mothers in the two groups were the same, i.e. high in carbohydrate and low in fat, protein and energy. The maternal zinc intake was 7.5mg/d and thus reached only 34.6% of the current Recommended Nutrient Intake (RNI). The levels of zinc and arachidonic acid (AA, C20:4 omega-6) in the milk of group I were significantly higher than those in group II. Furthermore, significant positive correlations were found between the concentrations of zinc and AA in the breast milk and between the level of milk AA and weight gain. CONCLUSION: Zinc may be a co-factor and essential for essential fatty acids (EFA) metabolism. Thus suboptimal zinc intake may cause EFA imbalance. Further studies of Chinese rural mother-infant pairs are necessary to determine whether zinc supplementation should be recommended when lactation exceeds 3 months.