6 resultados para Work Systems
em Greenwich Academic Literature Archive - UK
Resumo:
The FIRE Detection and Suppression Simulation (FIREDASS) project was concerned with the development of water misting systems as a possible replacement for halon based fire suppression systems currently used in aircraft cargo holds and ship engine rooms. As part of this program of work, a computational model was developed to assist engineers optimize the design of water mist suppression systems. The model is based on Computational Fluid Dynamics (CFD) and comprised of the following components: fire model; mist model; two-phase radiation model; suppression model; detector/activation model. In this paper the FIREDASS software package is described and the theory behind the fire and radiation sub-models is detailed. The fire model uses prescribed release rates for heat and gaseous combustion products to represent the fire load. Typical release rates have been determined through experimentation. The radiation model is a six-flux model coupled to the gas (and mist) phase. As part of the FIREDASS project, a detailed series of fire experiments were conducted in order to validate the fire model. Model predictions are compared with data from these experiments and good agreement is found.
Resumo:
The two-stage assembly scheduling problem is a model for production processes that involve the assembly of final or intermediate products from basic components. In our model, there are m machines at the first stage that work in parallel, and each produces a component of a job. When all components of a job are ready, an assembly machine at the second stage completes the job by assembling the components. We study problems with the objective of minimizing the makespan, under two different types of batching that occur in some manufacturing environments. For one type, the time to process a batch on a machine is equal to the maximum of the processing times of its operations. For the other type, the batch processing time is defined as the sum of the processing times of its operations, and a setup time is required on a machine before each batch. For both models, we assume a batch availability policy, i.e., the completion times of the operations in a batch are defined to be equal to the batch completion time. We provide a fairly comprehensive complexity classification of the problems under the first type of batching, and we present a heuristic and its worst-case analysis under the second type of batching.
A policy-definition language and prototype implementation library for policy-based autonomic systems
Resumo:
This paper presents work towards generic policy toolkit support for autonomic computing systems in which the policies themselves can be adapted dynamically and automatically. The work is motivated by three needs: the need for longer-term policy-based adaptation where the policy itself is dynamically adapted to continually maintain or improve its effectiveness despite changing environmental conditions; the need to enable non autonomics-expert practitioners to embed self-managing behaviours with low cost and risk; and the need for adaptive policy mechanisms that are easy to deploy into legacy code. A policy definition language is presented; designed to permit powerful expression of self-managing behaviours. The language is very flexible through the use of simple yet expressive syntax and semantics, and facilitates a very diverse policy behaviour space through both hierarchical and recursive uses of language elements. A prototype library implementation of the policy support mechanisms is described. The library reads and writes policies in well-formed XML script. The implementation extends the state of the art in policy-based autonomics through innovations which include support for multiple policy versions of a given policy type, multiple configuration templates, and meta-policies to dynamically select between policy instances and templates. Most significantly, the scheme supports hot-swapping between policy instances. To illustrate the feasibility and generalised applicability of these tools, two dissimilar example deployment scenarios are examined. The first is taken from an exploratory implementation of self-managing parallel processing, and is used to demonstrate the simple and efficient use of the tools. The second example demonstrates more-advanced functionality, in the context of an envisioned multi-policy stock trading scheme which is sensitive to environmental volatility
Resumo:
This paper describes work towards the deployment of flexible self-management into real-time embedded systems. A challenging project which focuses specifically on the development of a dynamic, adaptive automotive middleware is described, and the specific self-management requirements of this project are discussed. These requirements have been identified through the refinement of a wide-ranging set of use cases requiring context-sensitive behaviours. A sample of these use-cases is presented to illustrate the extent of the demands for self-management. The strategy that has been adopted to achieve self-management, based on the use of policies is presented. The embedded and real-time nature of the target system brings the constraints that dynamic adaptation capabilities must not require changes to the run-time code (except during hot update of complete binary modules), adaptation decisions must have low latency, and because the target platforms are resource-constrained the self-management mechanism have low resource requirements (especially in terms of processing and memory). Policy-based computing is thus and ideal candidate for achieving the self-management because the policy itself is loaded at run-time and can be replaced or changed in the future in the same way that a data file is loaded. Policies represent a relatively low complexity and low risk means of achieving self-management, with low run-time costs. Policies can be stored internally in ROM (such as default policies) as well as externally to the system. The architecture of a designed-for-purpose powerful yet lightweight policy library is described. A suitable evaluation platform, supporting the whole life-cycle of feasibility analysis, concept evaluation, development, rigorous testing and behavioural validation has been devised and is described.
Resumo:
Embedded electronic systems in vehicles are of rapidly increasing commercial importance for the automotive industry. While current vehicular embedded systems are extremely limited and static, a more dynamic configurable system would greatly simplify the integration work and increase quality of vehicular systems. This brings in features like separation of concerns, customised software configuration for individual vehicles, seamless connectivity, and plug-and-play capability. Furthermore, such a system can also contribute to increased dependability and resource optimization due to its inherent ability to adjust itself dynamically to changes in software, hardware resources, and environment condition. This paper describes the architectural approach to achieving the goals of dynamically self-configuring automotive embedded electronic systems by the EU research project DySCAS. The architecture solution outlined in this paper captures the application and operational contexts, expected features, middleware services, functions and behaviours, as well as the basic mechanisms and technologies. The paper also covers the architecture conceptualization by presenting the rationale, concerning the architecture structuring, control principles, and deployment concept. In this paper, we also present the adopted architecture V&V strategy and discuss some open issues in regards to the industrial acceptance.
Resumo:
This paper identifies the need for a verification methodology for manufacturing knowledge in design support systems; and proposes a suitable methodology based on the concept of ontological commitment and the PSL ontology (ISO/CD18629). The use of the verification procedures within an overall system development methodology is examined, and an understanding of how various categories of manufacturing knowledge (typical to design support systems) map onto the PSL ontology is developed. This work is also supported by case study material from industrial situations, including the casting and machining of metallic components. The PSL ontology was found to support the verification of most categories of manufacturing knowledge, and was shown to be particularly suited to process planning representations. Additional concepts and verification procedures were however needed to verify relationships between products and manufacturing processes. Suitable representational concepts and verification procedures were therefore developed, and integrated into the proposed knowledge verification methodology.