12 resultados para Wear particles

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The erosion processes resulting from flow of fluids (gas-solid or liquid-solid) are encountered in nature and many industrial processes. The common feature of these erosion processes is the interaction of the fluid (particle) with its boundary thus resulting in the loss of material from the surface. This type of erosion in detrimental to the equipment used in pneumatic conveying systems. The puncture of pneumatic conveyor bends in industry causes several problems. Some of which are: (1) Escape of the conveyed product causing health and dust hazard; (2) Repairing and cleaning up after punctures necessitates shutting down conveyors, which will affect the operation of the plant, thus reducing profitability. The most common occurrence of process failure in pneumatic conveying systems is when pipe sections at the bends wear away and puncture. The reason for this is particles of varying speed, shape, size and material properties strike the bend wall with greater intensity than in straight sections of the pipe. Currently available models for predicting the lifetime of bends are inaccurate (over predict by 80%. The provision of an accurate predictive method would lead to improvements in the structure of the planned maintenance programmes of processes, thus reducing unplanned shutdowns and ultimately the downtime costs associated with these unplanned shutdowns. This is the main motivation behind the current research. The paper reports on two aspects of the first phases of the study-undertaken for the current project. These are (1) Development and implementation; and (2) Testing of the modelling environment. The model framework encompasses Computational Fluid Dynamics (CFD) related engineering tools, based on Eulerian (gas) and Lagrangian (particle) approaches to represent the two distinct conveyed phases, to predict the lifetime of conveyor bends. The method attempts to account for the effect of erosion on the pipe wall via particle impacts, taking into account the angle of attack, impact velocity, shape/size and material properties of the wall and conveyed material, within a CFD framework. Only a handful of researchers use CFD as the basis of predicting the particle motion, see for example [1-4] . It is hoped that this would lead to more realistic predictions of the wear profile. Results, for two, three-dimensional test cases using the commercially available CFD PHOENICS are presented. These are reported in relation to the impact intensity and sensitivity to the inlet particle distributions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have performed for the first time a molecular dynamics simulation of the adsorption of gas-phase Ag particles on a graphite substrate to provide an insight into the results of a comprehensive STM-based experiment on this system. Both pair-wise and many-body interatomic potentials have been employed, and a Morse-type Ag–C potential was specifically constructed to describe the interactions at the interface. Our simulation has successfully reproduced a significant portion of the experimental findings. We have also observed the intercalation of silver in graphite.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computer-based numerical modelling of the adsorption process of gas phase metallic particles on the surface of a graphite substrate has been performed via the application of molecular dynamics simulation method. The simulation relates to an extensive STM-based experiment performed in this field, and reproduces part of the experimental results. Both two-body and many-body inter-atomic potentials have been employed. A Morse-type potential describing the metal-carbon interactions at the interface was specifically formulated for this modelling. Intercalation of silver in graphite has been observed as well as the correct alignments of monomers, dimers and two-dimensional islands on the surface. PACS numbers: 02.60.Cb, 07.05.Tp, 68.55.-a, 81.05.Tp

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The CFD modelling of metals reduction processes particularly always seems to involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. These phases all interact and exhange mass, momentum and energy. Often it is the extent to which these multi-phase phemomena can be effectively captured within the CFD model which determines whether or not a tool of genuine use to the target industry sector can constructed. In this paper we discuss these issues in the context of two problems - one involving the injection of sparging gases into a steel continuous caster and the other based on the development of a novel process for aluminium electrolysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A multi-phase framework is typically required for the CFD modelling of metals reduction processes. Such processes typically involve the interaction of liquid metals, a gas (often air) top space, liquid droplets in the top space and injection of both solid particles and gaseous bubbles into the bath. The exchange of mass, momentum and energy between the phases is fundamental to these processes. Multi-phase algorithms are complex and can be unreliable in terms of either or both convergence behaviour or in the extent to which the physics is captured. In this contribution, we discuss these multi-phase flow issues and describe an example of each of the main “single phase” approaches to modelling this class of problems (i.e., Eulerian–Lagrangian and Eulerian–Eulerian). Their utility is illustrated in the context of two problems – one involving the injection of sparging gases into a steel continuous slab caster and the other based on the development of a novel process for aluminium electrolysis. In the steel caster, the coupling of the Lagrangian tracking of the gas phase with the continuum enables the simulation of the transient motion of the metal–flux interface. The model of the electrolysis process employs a novel method for the calculation of slip velocities of oxygen bubbles, resulting from the dissolution of alumina, which allows the efficiency of the process to be predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical silicon solar cells are expected to serve as a technology to reduce silicon usage of photovoltaic (PV) power systems[1, 2, 3]. In order to establish the spherical silicon solar cell, a manufacturing method of uniformly sized silicon particles of 1mm in diameter is required. However, it is difficult to mass-produce the mono-sized silicon particles at low cost by existent processes now. We proposed a new method to generate liquid metal droplets uniformly by applying electromagnetic pinch force to a liquid metal jet[4]. The electromagnetic force was intermittently applied to the liquid metal jet issued from a nozzle in order to fluctuate the surface of the jet. As the fluctuation grew, the liquid jet was broken up into small droplets according to a frequency of the intermittent electromagnetic force. Firstly, a preliminary experiment was carried out. A single pulse current was applied instantaneously to a single turn coil around a molten gallium jet. It was confirmed that the jet could be split up by pinch force generated by the current. And then, electromagnetic pinch force was applied intermittently to the jet. It was found that the jet was broken up into mono-sized droplets in the case of a force frequency was equal to a critical frequency[5], which corresponds to a natural disturbance wave length of the jet. Numerical simulations of the droplet generation from the liquid jet were then carried out, which consisted of an electromagnetic analysis and a fluid flow calculation with a free surface of the jet. The simulation results were compared with the experiments and the agreement between the two was quite good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of cationic poly(N-isopropylacrylamide/4-vinylpyridine) [poly(NIPAM/4-VP)] polyelectrolyte co-polymer microgels have been prepared by surfactant free emulsion polymerization (SFEP) with varying compositions of 4-VP and NIPAM. The compositions of 4-VP were 15, 25, 35, 45, 55 wt.% relative to NIPAM. The temperature and pH responsive swelling–deswelling properties of these microgels have been investigated using dynamic light scattering (DLS) and electrophoretic mobility measurements. DLS results have shown that the particle diameter of the poly(NIPAM/4-VP) microgels decreases with increasing concentration (wt.%) of 4-VP over the 20–60 °C temperature range due to the increased amount of hydrophobic group. The particle size of all poly(NIPAM/4-VP) microgel series increases with decreasing pH, as the 4-VP units become more protonated at low pH below the pKa (5.39) of the monomer 4-VP. Electrophoretic mobility results have shown that electrophoretic mobility increases as the temperature/pH increases at a constant background ionic strength (1 × 10− 4 mol dm− 3 NaCl). These results are in good agreement with DLS results. The temperature/pH sensitivity of these microgels depends on the ratio of NIPAM/4-VP concentration in the co-polymer microgel systems. The combined temperature/pH responsiveness of these polyelectrolyte microgels can be used in applications where changes in particle size with small change in pH or temperature is of great consequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There are two major types of erosion testing devices that are used throughout the world for quantifying particle impact erosion against a solid surface. The first of these uses pressurised air to accelerate abrasive particles through a nozzle so that they impinge upon a target specimen. The second adopts a rotating disc to accelerate abrasive particles using the centripetal effect so that they impinge upon a series of targets arranged around the periphery of the disc. This paper reports the findings of a collaborative project that was designed to compare the performance and results obtained from a rig of each of the two types mentioned above. The sand blast type rig was provided by The Department of Powder Science Technology (POSTEC) at The Telemark Technological Research and Development Centre (TEL-TEK), Porsgrunn, Norway while the centripetal effect accelerator was provided by The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich, London, UK. The test programme included tests against a wide range of materials that are commonly used in pneumatic handling facilities. (Pneumatic handling is a means of conveying and transporting powders and granular solid materials in bulk in industrial process plant, through pipelines using a gas as the carrier medium.) Olivine sand was used as the abrasive and it was projected against the test specimens at velocities and concentrations commensurate with those seen in pneumatic conveyors. In all instances the materials used in the test programme were taken from the same batch so that scatter of experimental results due to specimen variation was minimised. The paper contains a series of recommendations for erosion testing equipment. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The gas-blast and centrifugal-accelerator testers are the two most commonly used erosion testers. An experimental and analytical study was made of the effect of particle characteristics (size, shape and concentration) on particle dynamics in each of these testers. Analysis showed that in the gas-blast tester both particle velocity and the dispersion angle of the particle jet were relatively sensitive to the particle characteristics. Particle characteristics, within the ranges studied, had little influence in the centrifugal accelerator tester. Consequently, during an erosion test, the range of particle velocities and dispersion angles in the gas-blast tester ismuch wider than in the centrifugal-accelerator tester. It was concluded that the centrifugal-accelerator tester gave closer control of the important erosion test parameters and therefore more consistent erosion test measurements. However, one drawback of the centrifugal-accelerator tester is the need to account for erosion effects associated with the impact of rotating particles, an inherent feature of this tester.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Granular air-borne particles generally carry very small amounts of electric charge as a consequence of charging by the triboelectric effect. The presence of such particles induces charge of opposite polarity on a stationary conducting electrode. The amount of charge carried by the particles and the trajectories of the particles have significant random components and the signals produced are of very low level. The signal processing is further complicated by the random variation in the concentration of particles, i.e. the solid/gas ratio. This paper compares the results obtained from the electrostatic modelling of such sensors with those obtained from experiments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this investigation was to examine the preparation and characterisation of hexane-in-water emulsions stabilised by clay particles. These emulsions, called Pickering emulsions, are characterised by the adsorption of solid particles at the oil/water (o/w) interface. The development of an elastic film at the o/w interface following the adsorption of colloidal particles helps to promote emulsion stability. Three different solid materials were used: silica sand, kaolin, and bentonite. Particles were added to the liquid mixtures in the range of 0.5–10 g dm−3. Emulsions were prepared using o/w ratios of 0.1, 0.2, 0.3, and 0.4. The effect of sodium chloride, on the stability of the prepared emulsions, was assessed in the range of 0–0.5 mol dm−3. In addition the use of a cationic surfactant hexadecyl-trimethylammonium bromide (CTAB) as an aid to improving emulsion stability was assessed in the concentration range of 0–0.05% (w/v). Characterisation of emulsion stability was realised through measurements of rheological properties including non-Newtonian viscosity, the elastic modulus, G', the loss modulus, G", and complex modulus, G*. The stability of the emulsions was evaluated immediately after preparation and 4 weeks later. Using the stability criteria, that for highly stable emulsions: G' > G" and both G' and G" are independent of frequency (varpi) it was concluded that highly stable emulsions could be prepared using a bentonite concentration of 2% (or more); an o/w ratio greater than 0.2; a CTAB concentration of 0.01%; and a salt concentration of 0.05 M or less—though salt was required.