2 resultados para WASTE WATER

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The extent and gravity of the environmental degradation of the water resources in Dhaka due to untreated industrial waste is not fully recognised in international discourse. Pollution levels affect vast numbers, but the poor and the vulnerable are the worst affected. For example, rice productivity, the mainstay of poor farmers, in the Dhaka watershed has declined by 40% over a period of ten years. The study found significant correlations between water pollution and diseases such as jaundice, diarrhoea and skin problems. It was reported that the cost of treatment of one episode of skin disease could be as high as 29% of the weekly earnings of some of the poorest households. The dominant approach to deal with pollution in the SMEs is technocratic. Given the magnitude of the problem this paper argues that to control industrial pollution by SMEs and to enhance their compliance it is necessary to move from the technocratic approach to one which can also address the wider institutional and attitudinal issues. Underlying this shift is the need to adopt the appropriate methodology. The multi-stakeholder analysis enables an understanding of the actors, their influence, their capacity to participate in, or oppose change, and the existing and embedded incentive structures which allow them to pursue interests which are generally detrimental to environmental good. This enabled core and supporting strategies to be developed around three types of actors in industrial pollution, i.e., (i) principal actors, who directly contribute to industrial pollution; (ii) stakeholders who exacerbate the situation; and (iii) potential actors in mitigation. Within a carrot-and-stick framework, the strategies aim to improve environmental governance and transparency, set up a packet to incentive for industry and increase public awareness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The concomitant recycling of waste and carbon dioxide emissions is the subject of developing technology designed to close the industrial process loop and facilitate the bulk-re-use of waste in, for example, construction. The present work discusses a treatment step that employs accelerated carbonation to convert gaseous carbon dioxide into solid calcium carbonate through a reaction with industrial thermal residues. Treatment by accelerated carbonation enabled a synthetic aggregate to be made from thermal residues and waste quarry fines. The aggregates produced had a bulk density below 1000 kg/m3 and a high water absorption capacity. Aggregate crushing strengths were between 30% and 90% stronger than the proprietary lightweight expanded clay aggregate available in the UK. Cast concrete blocks containing the carbonated aggregate achieve compressive strengths of 24 MPa, making them suitable for use with concrete exposed to non-aggressive service environments. The energy intensive firing and sintering processes traditionally required to produce lightweight aggregates can now be augmented by a cold-bonding, low energy method that contributes to the reduction of green house gases to the atmosphere.