3 resultados para Vehicle identification and detection system

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

SMARTFIRE, an open architecture integrated CFD code and knowledge based system attempts to make fire field modeling accessible to non-experts in Computational Fluid Dynamics (CFD) such as fire fighters, architects and fire safety engineers. This is achieved by embedding expert knowledge into CFD software. This enables the 'black-art' associated with the CFD analysis such as selection of solvers, relaxation parameters, convergence criteria, time steps, grid and boundary condition specification to be guided by expert advice from the software. The user is however given the option of overriding these decisions, thus retaining ultimate control. SMARTFIRE also makes use of recent developments in CFD technology such as unstructured meshes and group solvers in order to make the CFD analysis more efficient. This paper describes the incorporation within SMARTFIRE of the expert fire modeling knowledge required for automatic problem setup and mesh generation as well as the concept and use of group solvers for automatic and manual dynamic control of the CFD code.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Identification, when sought, is not necessarily obtained. Operational guidance that is normatively acceptable may be necessary for such cases. We proceed to formalize and illustrate modes of exchanges of individual identity, and provide procedures of recovery strategies in specific prescriptions from an ancient body of law for such situations when, for given types of purposes, individuals of some relevant kind had become intermixed and were undistinguishable. Rules were devised, in a variety of domains, for coping with situations that occur if and when the goal of identification was frustrated. We propose or discuss mathematical representations of such recovery procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A computational modelling approach integrated with optimisation and statistical methods that can aid the development of reliable and robust electronic packages and systems is presented. The design for reliability methodology is demonstrated for the design of a SiP structure. In this study the focus is on the procedure for representing the uncertainties in the package design parameters, their impact on reliability and robustness of the package design and how these can be included in the design optimisation modelling framework. The analysis of thermo-mechanical behaviour of the package is conducted using non-linear transient finite element simulations. Key system responses of interest, the fatigue life-time of the lead-free solder interconnects and warpage of the package, are predicted and used subsequently for design purposes. The design tasks are to identify the optimal SiP designs by varying several package input parameters so that the reliability and the robustness of the package are improved and in the same time specified performance criteria are also satisfied