3 resultados para Varying Magnetic-fields
em Greenwich Academic Literature Archive - UK
Resumo:
One of the core tasks of the virtual-manufacturing environment is to characterise the transformation of the state of material during each of the unit processes. This transformation in shape, material properties, etc. can only be reliably achieved through the use of models in a simulation context. Unfortunately, many manufacturing processes involve the material being treated in both the liquid and solid state, the trans-formation of which may be achieved by heat transfer and/or electro-magnetic fields. The computational modelling of such processes, involving the interactions amongst various interacting phenomena, is a consider-able challenge. However, it must be addressed effectively if Virtual Manufacturing Environments are to become a reality! This contribution focuses upon one attempt to develop such a multi-physics computational toolkit. The approach uses a single discretisation procedure and provides for direct interaction amongst the component phenomena. The need to exploit parallel high performance hardware is addressed so that simulation elapsed times can be brought within the realms of practicality. Examples of Multiphysics modelling in relation to shape casting, and solder joint formation reinforce the motivation for this work.
Resumo:
An electrolytic cell for Aluminium production contains molten metal and molten electrolyte, which are subject to high dc-currents and magnetic fields. Lorentz forces arising from the cross product of current and magnetic field may amplify natural gravity waves at the interface between the two fluids, leading to short circuits in extreme cases. The external magnetic field and current distribution in the production cell is computed through a detailed finite element analysis at Torino Polytechnic. The results are then used to compute the magnetohydrodynamic and thermal effects in the aluminium/electrolyte bath. Each cell has lateral dimensions of 6m x 2m, whilst the bath depth is only 30cm. the electrically resistive electrolyte path, which is critical in the operation of the cell, has layer depth of only a few centimetres below each carbon anode. Because the shallow dimensions of the liquid layer a finite-volume shallow-layer technique has been used at Greenwich to compute the resulting flow-field and interface perturbations. The information obtained from this method, i.e. depth averaged velocities and aluminium/electrolyte interface position is then embedded in the three-dimensional finite volume code PHYSICA and will be used to compute the heat transfer and phase change in the cell.
Resumo:
In the casting of reactive metals, such as titanium alloys, contamination can be prevented if there is no contact between the hot liquid metal and solid crucible. This can be achieved by containing the liquid metal by means of high frequency AC magnetic field. A water cooled current-carrying coil, surrounding the metal can then provide the required Lorentz forces, and at the same time the current induced in the metal can provide the heating required to melt it. This ‘attractive’ processing solution has however many problems, the most serious being that of the control and containment of the liquid metal envelope, which requires a balance of the gravity and induced inertia forces on the one side, and the containing Lorentz and surface tension forces on the other. To model this process requires a fully coupled dyna ic solution of the flow fields, magnetic field and heat transfer/melding process to account for. A simplified solution has been published previously providing quasi-static solutions only, by taking the irrotational ‘magnetic pressure’ term of the Lorentz force into account. The authors remedy this deficiency by modelling the full problem using CFD techniques. The salient features of these techniques are included in this paper, as space allows.