24 resultados para VCSEL modules

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. OECB's incorporate short range optical interconnects, and are based on VCSEL (Vertical Cavity Surface Emitting Diode) and PD (Photo Diode) pairs, connected to each other via embedded waveguides in the OECB. The VCSEL device is flip-chip assembled onto an organic substrate with embedded optical waveguides. The performance of the VCSEL device is governed by the thermal, mechanical and optical characteristics of this assembly. During operation, the VCSEL device will heat up and the thermal change together with the CTE mismatch in the materials, will result in potential misalignment between the VCSEL apertures and the waveguide openings in the substrate. Any degree of misalignment will affect the optical performance of the package. This paper will present results from a highly coupled modelling analysis involving thermal, mechanical and optical models. The paper will also present results from an optimisation analysis based on Design of Experiments (DOE).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The deployment of OECBs (opto-electrical circuit boards) is expected to make a significant impact in the telecomm switches arena within the next five years. This will create optical backplanes with high speed point-to-point optical interconnects. The crucial aspect in the manufacturing process of the optical backplane is the successful coupling between VCSEL (vertical cavity surface emitting laser) device and embedded waveguide in the OECB. The results from a thermo-mechanical analysis are being used in a purely optical model, which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the modelling are being investigated using DOE analysis to identify packaging parameters that minimise misalignment. This is achieved via a specialist optimisation software package. Results from the thermomechanical and optical models are discussed as are experimental results from the DOE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybrid OECB (Opto-Electrical Circuit Boards) are expected to make a significant impact in the telecomm switches arena within the next five years, creating optical backplanes with high speed point-to-point optical interconnects. The critical aspect in the manufacture of the optical backplane is the successful coupling between VCSEL (Vertical Cavity Surface Emitting Laser) device and embedded waveguide in the OECB. Optical performance will be affected by CTE mismatch in the material properties, and manufacturing tolerances. This paper will discuss results from a multidisciplinary research project involving both experimentation and modelling. Key process parameters are being investigated using Design of Experiments and Finite Element Modelling. Simulations have been undertaken that predict the temperature in the VCSEL during normal operation, and the subsequent misalignment that this imposes. The results from the thermomechanical analysis are being used with optimisation software and the experimental DOE (Design of Experiments) to identify packaging parameters that minimise misalignment. These results are also imported into an optical model which solves optical energy and attenuation from the VCSEL aperture into, and then through, the waveguide. Results from the thermomechanical and optical models will be discussed as will the experimental results from the DOE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the reliability of power electronics modules. The approach taken combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for the power module structure and most importantly the root cause of a potential failure. The paper details results for two types of failure (i) wire bond fatigue and (ii) substrate delamination. Finite element method modeling techniques have been used to predict the stress distribution within the module structures. A response surface optimisation approach has been employed to enable the optimal design and parameter sensitivity to be determined. The response surface is used by a Monte Carlo method to determine the effects of uncertainty in the design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, thermal cycling reliability along with ANSYS analysis of the residual stress generated in heavy-gauge Al bond wires at different bonding temperatures is reported. 99.999% pure Al wires of 375 mum in diameter, were ultrasonically bonded to silicon dies coated with a 5mum thick Al metallisation at 25degC (room temperature), 100degC and 200degC, respectively (with the same bonding parameters). The wire bonded samples were then subjected to thermal cycling in air from -60degC to +150degC. The degradation rate of the wire bonds was assessed by means of bond shear test and via microstructural characterisation. Prior to thermal cycling, the shear strength of all of the wire bonds was approximately equal to the shear strength of pure aluminum and independent of bonding temperature. During thermal cycling, however, the shear strength of room temperature bonded samples was observed to decrease more rapidly (as compared to bonds formed at 100degC and 200degC) as a result of a high crack propagation rate across the bonding area. In addition, modification of the grain structure at the bonding interface was also observed with bonding temperature, leading to changes in the mechanical properties of the wire. The heat and pressure induced by the high temperature bonding is believed to promote grain recovery and recrystallisation, softening the wires through removal of the dislocations and plastic strain energy. Coarse grains formed at the bonding interface after bonding at elevated temperatures may also contribute to greater resistance for crack propagation, thus lowering the wire bond degradation rate

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electric car, the all electric aircraft and requirements for renewable energy are examples of potential technologies needed to address the world problem of global warming/carbon emission etc. Power electronics and packaged modules are fundamental for the underpinning of these technologies and with the diverse requirements for electrical configurations and the range of environmental conditions, time to market is paramount for module manufacturers and systems designers alike. This paper details some of the results from a major UK project into the reliability of power electronic modules using physics of failure techniques. This paper presents a design methodology together with results that demonstrate enhanced product design with improved reliability, performance and value within acceptable time scales

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper discusses the reliability of an IGBT power electronics module. This work is part of a major UK funded initiative into the design, packaging and reliability of power electronic modules. The predictive methodology combines numerical modeling techniques with experimentation and accelerated testing to identify failure modes and mechanisms for these type of power electronic module structures. The paper details results for solder joint failure substrate solder. Finite element method modeling techniques have been used to predict the stress and strain distribution within the module structures. Together with accelerated life testing, these results have provided a failure model for these joints which has been used to predict reliability of a rail traction application

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a prognostic method which combines the physics of failure models with probability reasoning algorithm. The measured real time data (temperature vs. time) was used as the loading profile for the PoF simulations. The response surface equation of the accumulated plastic strain in the solder interconnect in terms of two variables (average temperature, and temperature amplitude) was constructed. This response surface equation was incorporated into the lifetime model of solder interconnect, and therefore the remaining life time of the solder component under current loading condition was predicted. The predictions from PoF models were also used to calculate the conditional probability table for a Bayesian Network, which was used to take into account of the impacts of the health observations of each product in lifetime prediction. The prognostic prediction in the end was expressed as the probability for the product to survive the expected future usage. As a demonstration, this method was applied to an IGBT power module used for aircraft applications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The article consists of a PowerPoint presentation on integrated reliability and prognostics prediction methodology for power electronic modules. The areas discussed include: power electronics flagship; design for reliability; IGBT module; design for manufacture; power module components; reliability prediction techniques; failure based reliability; etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a framework that is being developed for the prediction and analysis of electronics power module reliability both for qualification testing and in-service lifetime prediction. Physics of failure (PoF) reliability methodology using multi-physics high-fidelity and reduced order computer modelling, as well as numerical optimization techniques, are integrated in a dedicated computer modelling environment to meet the needs of the power module designers and manufacturers as well as end-users for both design and maintenance purposes. An example of lifetime prediction for a power module solder interconnect structure is described. Another example is the lifetime prediction of a power module for a railway traction control application. Also in the paper a combined physics of failure and data trending prognostic methodology for the health monitoring of power modules is discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A simulation of the motion of molten aluminium inside an electrolytic cell is presented. Since the driving term of the aluminium motion is the Lorentz (j × B) body force acting within the fluid,this problem involves the solution of the magneto-hydro-dynamic equations. Different solver modules for the magnetic field computation and for the fluid motion simulation are coupled together. The interactions of all these are presented and discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper demonstrates a modeling and design approach that couples computational mechanics techniques with numerical optimisation and statistical models for virtual prototyping and testing in different application areas concerning reliability of eletronic packages. The integrated software modules provide a design engineer in the electronic manufacturing sector with fast design and process solutions by optimizing key parameters and taking into account complexity of certain operational conditions. The integrated modeling framework is obtained by coupling the multi-phsyics finite element framework - PHYSICA - with the numerical optimisation tool - VisualDOC into a fully automated design tool for solutions of electronic packaging problems. Response Surface Modeling Methodolgy and Design of Experiments statistical tools plus numerical optimisaiton techniques are demonstrated as a part of the modeling framework. Two different problems are discussed and solved using the integrated numerical FEM-Optimisation tool. First, an example of thermal management of an electronic package on a board is illustrated. Location of the device is optimized to ensure reduced junction temperature and stress in the die subject to certain cooling air profile and other heat dissipating active components. In the second example thermo-mechanical simulations of solder creep deformations are presented to predict flip-chip reliability and subsequently used to optimise the life-time of solder interconnects under thermal cycling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

FEA and CFD analysis is becoming ever more complex with an emerging demand for simulation software technologies that can address ranges of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and length scales. Computation modelling of such problems requires software technologies that enable the representation of these complex suites of 'physical' interactions. This functionality requires the structuring of simulation modules for specific physical phemonmena so that the coupling can be effectiely represented. These 'multi-physics' and 'multi-scale' computations are very compute intensive and so the simulation software must operate effectively in parallel if it is to be used in this context. Of course the objective of 'multi-physics' and 'multi-scale' simulation is the optimal design of engineered systems so optimistation is an important feature of such classes of simulation. In this presentation, a multi-disciplinary approach to simulation based optimisation is described with some key examples of application to challenging engineering problems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This paper provides an overview of the developing needs for simulation software technologies for the computational modelling of problems that involve combinations of interactions amongst varying physical phenomena over a variety of time and space scales. Computational modelling of such problems requires software tech1nologies that enable the mathematical description of the interacting physical phenomena together with the solution of the resulting suites of equations in a numerically consistent and compatible manner. This functionality requires the structuring of simulation modules for specific physical phenomena so that the coupling can be effectively represented. These multi-physics and multi-scale computations are very compute intensive and the simulation software must operate effectively in parallel if it is to be used in this context. An approach to these classes of multi-disciplinary simulation in parallel is described, with some key examples of application to2 challenging engineering problems.