8 resultados para UNIT CELL VARIATIONS

em Greenwich Academic Literature Archive - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Rhodanines (2-thio-4-oxothiazolidines) are synthetic small molecular weight organic molecules with diverse applications in biochemistry, medicinal chemistry, photochemistry, coordination chemistry and industry. The X-ray crystal structure determination of two rhodanine derivatives, namely (I), 3-aminorhodanine [3-amino-2-thio-4-oxothiazolidine], C3H4N2OS2, and (II) 3-methylrhodanine [3-methyl-2-thio-4-oxothiazolidine], C4H5NOS2, have been conducted at 100 K. I crystallizes in the monoclinic space group P2(1)/n with unit cell parameters a = 9.662(2), b = 9.234(2), c = 13.384(2) angstrom, beta = 105.425(3)degrees, V = 1151.1(3) angstrom(3), Z = 8 (2 independent molecules per asymmetric unit), density (calculated) = 1.710 mg/m(3), absorption coefficient = 0.815 mm(-1). II crystallizes in the orthorhombic space group Iba2 with unit cell a = 20.117(4), b = 23.449(5), c = 7.852(2) angstrom, V = 3703.9(12) angstrom(3), Z = 24 (three independent molecules per asymmetric unit), density (calculated) = 1.584 mg/m(3), absorption coefficient 0.755 mm(-1). For I in the final refinement cycle the data/restraints/parameter ratios were 2639/0/161, goodness-of-fit on F-2 = 0.934, final R indices [I > 2sigma(I)] were R1 = 0.0299, wR2 = 0.0545 and R indices (all data) R1 = 0.0399, wR2 = 0.0568. The largest difference peak and hole were 0.402 and -0.259 e angstrom(-3). For II in the final refinement cycle the data/restraints/parameter ratios were 3372/1/221, goodness-of-fit on F(2) = 0.950, final R indices [I > 2sigma(I)] were R1 = 0.0407, wR2 = 0.1048 and R indices (all data) R1 = 0.0450, wR2 = 0.1088. The absolute structure parameter = 0.19(9) and largest difference peak and hole 0.934 and -0.301 e angstrom(-3). Details of the geometry of the five molecules (two for I and three for II) and the crystal structures are fully discussed. Corresponding features of the molecular geometry are highly consistent and firmly establish the geometry of the rhodanine

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The X-ray crystal structures of (I), the base 4030W92, 5-(2,3-dichlorophenyl)-2,4-diamino-6-fluoromethyl-pyrimidine, C11H9Cl2FN4, and (II) 227C89, the methanesulphonic acid salt of 5-(2,6-dichlorophenyl)-1-H-2,4-diamino-6-methyl-pyrimidine, C11H11Cl2N4 center dot CH3O3S, have been carried out at low temperature. A detailed comparison of the two structures is given. Structure (I) is non-centrosymmetric, crystallizing in space group P2(1) with unit cell a = 10.821(3), b = 8.290(3), c = 13.819(4) angstrom, beta = 105.980(6)degrees, V = 1191.8(6) angstrom(3), Z = 4 (two molecules per asymmetric unit) and density (calculated) = 1.600 mg/m(3). Structure (II) crystallizes in the triclinic space group P (1) over bar with unit cell a = 7.686(2), b = 8.233(2), c = 12.234(2) angstrom, alpha = 78.379(4), beta = 87.195(4), gamma = 86.811(4)degrees, V = 756.6(2) angstrom(3), Z = 2, density (calculated) = 1.603 mg/m(3). Final R indices [I > 2sigma(I)] are R1 = 0.0572, wR2 = 0.1003 for (I) and R1 = 0.0558, wR2 = 0.0982 for (II). R indices (all data) are R1 = 0.0983, wR2 = 0.1116 for (I) and R1 = 0.1009, wR2 = 0.1117 for (II). 5- Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this structural series and their biological activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

N-acetyl-L-glutamic acid, crystallizes in the orthorhombic space group P2(1)2(1)2(1) with unit cell parameters a = 4.747(3), b = 12.852(7), c = 13.906(7) Å, V = 848.5(8) Å3, Z = 4, density (calculated) = 1.481 mg/m3, linear absorption coefficient 0.127 mm−1. The crystal structure determination was carried out with MoKalpha X-ray data measured with liquid nitrogen cooling at 100(2) K temperature. In the final refinement cycle the data/restraints/parameter ratios were 1,691/0/131; goodness-of-fit on F(2) = 1.122. Final R indices for [I > 2sigma(I)] were R1 = 0.0430, wR2 = 0.0878 and R indices (all data) R1 = 0.0473, wR2 = 0.0894. The largest electron density difference peak and hole were 0.207 and −0.154 eÅ(−3). Details of the molecular geometry are discussed and compared with a model DFT structure calculated using Gaussian 98.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Solid-state protonated and N,O-deuterated Fourier transform infrared (IR) and Raman scattering spectra together with the protonated and deuterated Raman spectra in aqueous solution of the cyclic di-amino acid peptide cyclo(L-Asp-L-Asp) are reported. Vibrational band assignments have been made on the basis of comparisons with previously cited literature values for diketopiperazine (DKP) derivatives and normal coordinate analyses for both the protonated and deuterated species based upon DFT calculations at the B3-LYP/cc-pVDZ level of the isolated molecule in the gas phase. The calculated minimum energy structure for cyclo(L-Asp-L-Asp), assuming C-2 symmetry, predicts a boat conformation for the DKP ring with both the two L-aspartyl side chains being folded slightly above the ring. The C=O stretching vibrations have been assigned for the side-chain carboxylic acid group (e.g. at 1693 and 1670 cm(-1) in the Raman spectrum) and the cis amide I bands (e.g. at 1660 cm(-1) in the Raman spectrum). The presence of two bands for the carboxylic acid C=O stretching modes in the solid-state Raman spectrum can be accounted for by factor group splitting of the two nonequivalent molecules in a crystallographic unit cell. The cis amide II band is observed at 1489 cm(-1) in the solid-state Raman spectrum, which is in agreement with results for cyclic di-amino acid peptide molecules examined previously in the solid state, where the DKP ring adopts a boat conformation. Additionally, it also appears that as the molecular mass of the substituent on the C-alpha atom is increased, the amide II band wavenumber decreases to below 1500 cm(-1); this may be a consequence of increased strain on the DKP ring. The cis amide II Raman band is characterized by its relatively small deuterium shift (29 cm(-1)), which indicates that this band has a smaller N-H bending contribution than the trans amide II vibrational band observed for linear peptides.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

B3-LYP/cc-pVDZ calculations of the gas-phase structure and vibrational spectra of the isolated molecule cyclo(L-Ser-L-Ser), a cyclic di-amino acid peptide (CDAP), were carried out by assuming C-2 symmetry. It is predicted that the minimum-energy structure is a boat conformation for the diketopiperazine (DKP) ring with both L-Beryl side chains being folded slightly above the ring. An additional structure of higher energy (15.16 kJ mol(-1)) has been calculated for a DKP ring with a planar geometry, although in this case two fundamental vibrations have been calculated with imaginary wavenumbers. The reported X-ray crystallographic structure of cyclo(L-Ser-L-Ser), shows that the DKP ring displays a near-planar conformation, with both the two L-Beryl side chains being folded above the ring. It is hypothesized that the crystal packing forces constrain the DKP ring in a planar conformation and it is probable that the lower energy boat conformation may prevail in the aqueous environment. Raman scattering and Fourier-transform infrared (FT-IR) spectra of solid state and aqueous solution samples of cyclo(L-Ser-L-Ser) are reported and discussed. Vibrational band assignments have been made on the basis of comparisons with the calculated vibrational spectra and band wavenumber shifts upon deuteration of labile protons. The experimental Raman and IR results for solid-state samples show characteristic amide I vibrations which are split (Raman:1661 and 1687 cm(-1), IR:1666 and 1680 cm(-1)), possibly due to interactions between molecules in a crystallographic unit cell. The cis amide I band is differentiated by its deuterium shift of ~ 30 cm(-1), which is larger than that previously reported for trans amide I deuterium shifts. A cis amide II mode has been assigned to a Raman band located at 1520 cm(-1). The occurrence of this cis amide II mode at a wavenumber above 1500 cm(-1) concurs with results of previously examined CDAP molecules with low molecular weight substituents on the C-alpha atoms, and is also indicative of a relatively unstrained DKP ring.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Experimental Raman and FT-IR spectra of solid-state non-deuterated and N-deuterated samples of cyclo(L-Met-L-Met) are reported and discussed. The Raman and FT-IR results show characteristic amide I vibrations (Raman: 1649 cm-1, infrared: 1675 cm-1) for molecules exhibiting a cis amide conformation. A Raman band, assigned to the cis amide II vibrational mode, is observed at sim1493 cm-1 but no IR band is observed in this region. Cyclo(L-Met-L-Met) crystallises in the triclinic space group P1 with one molecule per unit cell. The overall shape of the diketopiperazine (DKP) ring displays a (slightly distorted) boat conformation. The crystal packing employs two strong hydrogen bonds, which traverse the entire crystal via translational repeats. B3-LYP/cc-pVDZ calculations of the structure of the molecule predict a boat conformation for the DKP ring, in agreement with the experimentally determined X-ray structure. Copyright © 2009 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The X-ray crystal structures of two crystalline forms of 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine, C10H7Cl3N4 (code name BW1003C87) (I) and (II), have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are centrosymmetric, with structure (I) in the triclinic space group P (1) over bar unit cell a = 6.4870(10), b = 9.216(2), c = 12.016(2) angstrom, alpha = 75.78(3)degrees, beta = 89.95(3)degrees, gamma = 83.45(3)degrees, V = 691.5(2) angstrom(3), Z = 2 and density (calculated) = 1.544 Mg/m(3); and (II) in the monoclinic space group P2(1)/c, unit cell a = 12.000(2), b = 7.518(2), c = 13.450(3) angstrom, beta = 97.87(3)degrees, V = 1202.0(5) angstrom(3), Z = 4, Density (calculated) = 1.600 Mg/m(3). Structure (I) includes a solvated CH3OH in the lattice. Final R indices [I > 2sigma(I)] are R1 = 0.0427, wR2 = 0.1075 for (I) and R1 = 0.0487, wR2 = 0.1222 for (II). R indices (all data) are R1 = 0.0470, wR2 = 0.1118 for (I) and R1 = 0.0623, wR2 = 0.1299 for (II). 5-Phenyl-2,4 diaminopyrimidine and 6-phenyl-1,2,4 triazine derivatives, which include lamotrigine (3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine), have been investigated for some time for their effects on the central nervous system. Both lamotrigine and 5-(2,3,5-trichlorophenyl)-2,4-diaminopyrimidine (code name BW1003C87), the subject of the present study, are anticonvulsant as well as neuroprotective in models of brain ischaemia and in a model of white matter ischaemia. BW1003C87 is a sodium channel blocker which also reduces the release of the neurotransmitter glutamate. The three dimensional structures reported here form part of a newly developed data base for the detailed investigation of members of this drug family and their biological activities.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The X-ray crystal structures of two lamotrigine derivatives (I) 2-methyl, 3-amino, 5-imino-6-(2, 3-dichlorophenyl)-1,2,4-triazine, C10H9Cl2N5, as the hemi hydrate and (II) 2-methyl,3,5-diamino-6-(2,3-dichlorophenyl)-1,2,4-triazine, C10H10Cl2N5, as the isethionate-water solvate, have been carried out at liquid nitrogen temperature. A detailed comparison of the two structures is given. Both are monoclinic and centrosymmetric, with (I) in space group C2/c, and (II) in space group P2(1)/n. For (I) the unit cell dimensions are a = 19.5466(10), b = 7.5483(4), c = 15.7861(8) angstrom, beta = 91.458(3)degrees, volume = 2328.4(2) angstrom(3), Z = 8, density = 1.590 Mg/m(3); for (II). For (II) the unit cell dimensions are a = 6.0566(2), b = 11.0084(4) c = 23.9973(9) angstrom, beta = 92.587(3)degrees, volume = 1598.35(10) angstrom(3), Z = 4, density = 1.597 Mg/m(3). For (I) final R indices [I > 2sigma(I)] are R1 = 0.0356, wR2 = 0.0782 and R indices (all data) are R1 = 0.0424, wR2 = 0.0817. For (II) final R indices [I > 2sigma(I)] are R1 = 0.0380, wR2 = 0.0871 and R indices (all data) R1 = 0.0558, wR2 = 0.0949. Both structures have a molecule of water of crystallization and (II) also includes a solvated CH3SO3. Comparisons are made between the two structures. Structure (I) is very unusual in having a = NH group at position C5' on the triazine ring. No other examples of this particular substitution, which is usually -NH2, have been reported.