5 resultados para Turbulent
em Greenwich Academic Literature Archive - UK
Resumo:
The liquid metal flow in induction crucible models is known to be unstable, turbulent and difficult to predict in the regime of medium frequencies when the electromagnetic skin-layer is of considerable extent. We present long term turbulent flow measurements by a permanent magnet incorporated potential difference velocity probe in a cylindrical container filled with eutectic melt In-Ga-Sn. The parallel numerical simulation of the long time scale development of the turbulent average flow is presented. The numerical flow model uses an implicit pseudo-spectral code and k-w turbulence model, which was recently developed for the transitional flow modelling. The results compare reasonably to the experiment and demonstrate the time development of the turbulent flow field and the turbulence energy.
Resumo:
The liquid metal flow in inducation crucible models is known to be higly unstable and turbutlen in the regim e of medium frequecies when the elctronmagnetic skin-layer is of considerable extent. We present long term turbulent flow measurements by a permanent magnet incorporated potential difference veolocity probe in a cylindirical container filled with eutecti mlt In-Ga-SN. The parallel numerical simulation of the long time scale development of the turbulen average flow is presented. The numerical lfow model uses a pseud-spectral code and k-w turbulence model, which was recently developed for the transitional flow modelling. The result compare reasonably to the experiment and demonstrate the time development of the turbulent flow field.
Resumo:
The present paper is a report on progress in the simulation of turbulent flames using the Cray T3D and T3E at the Edinburgh parallel computing centre, using codes developed in Cambridge. Two combustion DNS codes are described, ANGUS and SENGA, which solve incompressible and fully compressible reacting flows respectively. The technical background to combustion DNS is presented, and the resource requirements explained in terms of the physic and chemistry of the problem. Results for flame turbulence interaction studies are presented and discussed in terms of their relevance to modelling. Recent work on the fully compressible problem is highlighted and future directions outlined.
Resumo:
Abstract not available