2 resultados para Triassic
em Greenwich Academic Literature Archive - UK
Resumo:
The Triassic Argilo-Gréseux Inférieur Formation (TAG-I) is one of the principal hydrocarbon reservoirs in the Berkine Basin of Algeria. Sedimentological studies have shown that it exhibits marked spatial and temporal facies variations on both a local field scale and a regional basinal scale. This variability, combined with a lack of diagnostic flora and fauna, makes regional correlation within the unit difficult. In turn, the lack of a consistent regional stratigraphic framework hampers the comparison of the various correlation schemes devised by operators in the basin. Contrasting the TAG-I in Blocks 402 and 405a exemplifies the problems encountered when attempting regionally to define a correlation framework for the interval. Between these two blocks, a distance of approximately 200 km, there are marked changes in the style of deposition from sand-dominated, proximal fluvial systems in the SW (Block 405a, MLN, MLC, KMD and MLNW fields) to a more distal, more clay-prone system in the NE (Block 402, ROD/BRSE/BSFN, SFNE and BSF fields). A chemostratigraphic study of the TAG-I in these two blocks has allowed a four-fold correlation framework to be defined, where each chemostratigraphic package has distinctive geochemical features. Chemostratigraphic Package 10, the oldest unit, lies above the Hercynian Unconformity, but beneath a geochemically identifiable hiatal surface. Chemostratigraphic Package 20 lies above the hiatal surface but is separated from the overlying packages by a mineralogical change identifiable in both claystone and sandstone geochemistry. Chemostratigraphic Packages 30 and 40 are chemically somewhat similar, but are separated by a regional event interpreted as a period of dolocrete and lacustrine development. By combining the geochemical differentiation of the units and recognition of their stratal boundaries, it is possible to define a correlation for the TAG-I between Blocks 402 and 405a. The proposed correlation between the two blocks suggests that the northern parts of Block 405a may have been occupied by a spur or subsidiary channel from the main SW–NE-trending fluvial system, resulting in one of the chemically defined packages being demonstrably absent in the MLNW, MLN, KMD and MLC fields when compared with the other areas of the study.
Resumo:
The recognition that urban groundwater is a potentially valuable resource for potable and industrial uses due to growing pressures on perceived less polluted rural groundwater has led to a requirement to assess the groundwater contamination risk in urban areas from industrial contaminants such as chlorinated solvents. The development of a probabilistic risk based management tool that predicts groundwater quality at potential new urban boreholes is beneficial in determining the best sites for future resource development. The Borehole Optimisation System (BOS) is a custom Geographic Information System (GIs) application that has been developed with the objective of identifying the optimum locations for new abstraction boreholes. BOS can be applied to any aquifer subject to variable contamination risk. The system is described in more detail by Tait et al. [Tait, N.G., Davison, J.J., Whittaker, J.J., Lehame, S.A. Lerner, D.N., 2004a. Borehole Optimisation System (BOS) - a GIs based risk analysis tool for optimising the use of urban groundwater. Environmental Modelling and Software 19, 1111-1124]. This paper applies the BOS model to an urban Permo-Triassic Sandstone aquifer in the city centre of Nottingham, UK. The risk of pollution in potential new boreholes from the industrial chlorinated solvent tetrachloroethene (PCE) was assessed for this region. The risk model was validated against contaminant concentrations from 6 actual field boreholes within the study area. In these studies the model generally underestimated contaminant concentrations. A sensitivity analysis showed that the most responsive model parameters were recharge, effective porosity and contaminant degradation rate. Multiple simulations were undertaken across the study area in order to create surface maps indicating areas of low PCE concentrations, thus indicating the best locations to place new boreholes. Results indicate that northeastern, eastern and central regions have the lowest potential PCE concentrations in abstraction groundwater and therefore are the best sites for locating new boreholes. These locations coincide with aquifer areas that are confined by low permeability Mercia Mudstone deposits. Conversely southern and northwestern areas are unconfined and have shallower depth to groundwater. These areas have the highest potential PCE concentrations. These studies demonstrate the applicability of BOS as a tool for informing decision makers on the development of urban groundwater resources. (c) 2007 Elsevier Ltd. All rights reserved.