5 resultados para Topology-based methods

em Greenwich Academic Literature Archive - UK


Relevância:

80.00% 80.00%

Publicador:

Resumo:

A new general cell-centered solution procedure based upon the conventional control or finite volume (CV or FV) approach has been developed for numerical heat transfer and fluid flow which encompasses both structured and unstructured meshes for any kind of mixed polygon cell. Unlike conventional FV methods for structured and block structured meshes and both FV and FE methods for unstructured meshes, the irregular control volume (ICV) method does not require the shape of the element or cell to be predefined because it simply exploits the concept of fluxes across cell faces. That is, the ICV method enables meshes employing mixtures of triangular, quadrilateral, and any other higher order polygonal cells to be exploited using a single solution procedure. The ICV approach otherwise preserves all the desirable features of conventional FV procedures for a structured mesh; in the current implementation, collocation of variables at cell centers is used with a Rhie and Chow interpolation (to suppress pressure oscillation in the flow field) in the context of the SIMPLE pressure correction solution procedure. In fact all other FV structured mesh-based methods may be perceived as a subset of the ICV formulation. The new ICV formulation is benchmarked using two standard computational fluid dynamics (CFD) problems i.e., the moving lid cavity and the natural convection driven cavity. Both cases were solved with a variety of structured and unstructured meshes, the latter exploiting mixed polygonal cell meshes. The polygonal mesh experiments show a higher degree of accuracy for equivalent meshes (in nodal density terms) using triangular or quadrilateral cells; these results may be interpreted in a manner similar to the CUPID scheme used in structured meshes for reducing numerical diffusion for flows with changing direction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractal image compression is a relatively recent image compression method. Its extension to a sequence of motion images is important in video compression applications. There are two basic fractal compression methods, namely the cube-based and the frame-based methods, being commonly used in the industry. However there are advantages and disadvantages in both methods. This paper proposes a hybrid algorithm highlighting the advantages of the two methods in order to produce a good compression algorithm for video industry. Experimental results show the hybrid algorithm improves the compression ratio and the quality of decompressed images.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fractal image compression is a relatively recent image compression method, which is simple to use and often leads to a high compression ratio. These advantages make it suitable for the situation of a single encoding and many decoding, as required in video on demand, archive compression, etc. There are two fundamental fractal compression methods, namely, the cube-based and the frame-based methods, being commonly studied. However, there are advantages and disadvantages in both methods. This paper gives an extension of the fundamental compression methods based on the concept of adaptive partition. Experimental results show that the algorithms based on adaptive partition may obtain a much higher compression ratio compared to algorithms based on fixed partition while maintaining the quality of decompressed images.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Image inpainting refers to restoring a damaged image with missing information. The total variation (TV) inpainting model is one such method that simultaneously fills in the regions with available information from their surroundings and eliminates noises. The method works well with small narrow inpainting domains. However there remains an urgent need to develop fast iterative solvers, as the underlying problem sizes are large. In addition one needs to tackle the imbalance of results between inpainting and denoising. When the inpainting regions are thick and large, the procedure of inpainting works quite slowly and usually requires a significant number of iterations and leads inevitably to oversmoothing in the outside of the inpainting domain. To overcome these difficulties, we propose a solution for TV inpainting method based on the nonlinear multi-grid algorithm.