4 resultados para Three-dimensional model of onboarding

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bulk and interdendritic flow during solidification alters the microstructure development, potentially leading to the formation of defects. In this paper, a 3D numerical model is presented for the simulation of dendritic growth in the presence of fluid flow in both liquid and semi-solid zones during solidification. The dendritic growth was solved by the combination of a stochastic nucleation approach with a finite difference solution of the solute diffusion equation and. a projection method solution of the Navier-Stokes equations. The technique was applied first to simulate the growth of a single dendrite in 2D and 3D in an isothermal environment with forced fluid flow. Significant differences were found in the evolution of dendritic morphology when comparing the 2D and 3D results. In 3D the upstream arm has a faster growth velocity due to easier flow around the perpendicular arms. This also promotes secondary arm formation on the upstream arm. The effect of fluid flow on columnar dendritic growth and micro-segregation in constrained solidification conditions is then simulated. For constrained growth, 2D simulations lead to even greater inaccuracies as compared to 3D.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. Numerical modelling of dynamic fluid-structure interaction (DFSI) involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge and until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. A single, finite volume unstructured mesh (FV-UM) spatial discretisation method has been employed on a single mesh for the entire domain. The Navier Stokes equations for fluid flow are solved using a SIMPLE type procedure and the Newmark b algorithm is employed for solving the dynamic equilibrium equations for linear elastic solid mechanics and mesh movement is achieved using a spring based mesh procedure for dynamic mesh movement. In the paper we describe a number of additional computation issues for the efficient and accurate modelling of three-dimensional, dynamic fluid-structure interaction problems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a three dimensional, thermos-mechanical modelling approach to the cooling and solidification phases associated with the shape casting of metals ei. Die, sand and investment casting. Novel vortex-based Finite Volume (FV) methods are described and employed with regard to the small strain, non-linear Computational Solid Mechanics (CSM) capabilities required to model shape casting. The CSM capabilities include the non-linear material phenomena of creep and thermo-elasto-visco-plasticity at high temperatures and thermo-elasto-visco-plasticity at low temperatures and also multi body deformable contact with which can occur between the metal casting of the mould. The vortex-based FV methods, which can be readily applied to unstructured meshes, are included within a comprehensive FV modelling framework, PHYSICA. The additional heat transfer, by conduction and convection, filling, porosity and solidification algorithms existing within PHYSICA for the complete modelling of all shape casting process employ cell-centred FV methods. The termo-mechanical coupling is performed in a staggered incremental fashion, which addresses the possible gap formation between the component and the mould, and is ultimately validated against a variety of shape casting benchmarks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Unstructured mesh codes for modelling continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Parallelisation of such codes using single Program Multi Data (SPMD) domain decomposition techniques implemented with message passing has been demonstrated to provide high parallel efficiency, scalability to large numbers of processors P and portability across a wide range of parallel platforms. High efficiency, especially for large P requires that load balance is achieved in each parallel loop. For a code in which loops span a variety of mesh entity types, for example, elements, faces and vertices, some compromise is required between load balance for each entity type and the quantity of inter-processor communication required to satisfy data dependence between processors.