8 resultados para Thermal power dissipated
em Greenwich Academic Literature Archive - UK
Resumo:
In this paper the reliability of the isolation substrate and chip mountdown solder interconnect of power modules under thermal-mechanical loading has been analysed using a numerical modelling approach. The damage indicators such as the peel stress and the accumulated plastic work density in solder interconnect are calculated for a range of geometrical design parameters, and the effects of these parameters on the reliability are studied by using a combination of the finite element analysis (FEA) method and optimisation techniques. The sensitivities of the reliability of the isolation substrate and solder interconnect to the changes of the design parameters are obtained and optimal designs are studied using response surface approximation and gradient optimization method
Resumo:
In this paper, thermal cycling reliability along with ANSYS analysis of the residual stress generated in heavy-gauge Al bond wires at different bonding temperatures is reported. 99.999% pure Al wires of 375 mum in diameter, were ultrasonically bonded to silicon dies coated with a 5mum thick Al metallisation at 25degC (room temperature), 100degC and 200degC, respectively (with the same bonding parameters). The wire bonded samples were then subjected to thermal cycling in air from -60degC to +150degC. The degradation rate of the wire bonds was assessed by means of bond shear test and via microstructural characterisation. Prior to thermal cycling, the shear strength of all of the wire bonds was approximately equal to the shear strength of pure aluminum and independent of bonding temperature. During thermal cycling, however, the shear strength of room temperature bonded samples was observed to decrease more rapidly (as compared to bonds formed at 100degC and 200degC) as a result of a high crack propagation rate across the bonding area. In addition, modification of the grain structure at the bonding interface was also observed with bonding temperature, leading to changes in the mechanical properties of the wire. The heat and pressure induced by the high temperature bonding is believed to promote grain recovery and recrystallisation, softening the wires through removal of the dislocations and plastic strain energy. Coarse grains formed at the bonding interface after bonding at elevated temperatures may also contribute to greater resistance for crack propagation, thus lowering the wire bond degradation rate
Resumo:
A numerical modeling method for the prediction of the lifetime of solder joints of relatively large solder area under cyclic thermal-mechanical loading conditions has been developed. The method is based on the Miner's linear damage accumulation rule and the properties of the accumulated plastic strain in front of the crack in large area solder joint. The nonlinear distribution of the damage indicator in the solder joints have been taken into account. The method has been used to calculate the lifetime of the solder interconnect in a power module under mixed cyclic loading conditions found in railway traction control applications. The results show that the solder thickness is a parameter that has a strong influence on the damage and therefore the lifetime of the solder joint while the substrate width and the thickness of the baseplate are much less important for the lifetime
Resumo:
Optimal design of a power electronics module isolation substrate is assessed using a combination of finite element structural mechanics analysis and response surface optimisation technique. Primary failure modes in power electronics modules include the loss of structural integrity in the ceramic substrate materials due to stresses induced through thermal cycling. Analysis of the influence of ceramic substrate design parameters is undertaken using a design of experiments approach. Finite element analysis is used to determine the stress distribution for each design, and the results are used to construct a quadratic response surface function. A particle swarm optimisation algorithm is then used to determine the optimal substrate design. Analysis of response surface function gradients is used to perform sensitivity analysis and develop isolation substrate design rules. The influence of design uncertainties introduced through manufacturing tolerances is assessed using a Monte-Carlo algorithm, resulting in a stress distribution histogram. The probability of failure caused by the violation of design constraints has been analyzed. Six geometric design parameters are considered in this work and the most important design parameters have been identified. Overall analysis results can be used to enhance the design and reliability of the component.
Resumo:
A numerical modelling method for the analysis of solder joint damage and crack propagation has been described in this paper. The method is based on the disturbed state concept. Under cyclic thermal-mechanical loading conditions, the level of damage that occurs in solder joints is assumed to be a simple monotonic scalar function of the accumulated equivalent plastic strain. The increase of damage leads to crack initiation and propagation. By tracking the evolution of the damage level in solder joints, crack propagation path and rate can be simulated using Finite Element Analysis method. The discussions are focused on issues in the implementation of the method. The technique of speeding up the simulation and the mesh dependency issues are analysed. As an example of the application of this method, crack propagation in solder joints of power electronics modules under cyclic thermal-mechanical loading conditions has been analyzed and the predicted cracked area size after 3000 loading cycles is consistent with experimental results.
Resumo:
In this paper, computer modelling techniques are used to analyse the effects of globtops on the reliability of aluminium wirebonds in power electronics modules under cyclic thermal-mechanical loading conditions. The sensitivity of the wirehond reliability to the changes of the geometric and the material property parameters of wirebond globtop are evaluated and the optimal combination of the Young's modulus and the coefficient of thermal expansion have been predicted.
Resumo:
Experimental, analytical and simulated data are presented in this article to assess the performance of electrodeposited nickel-iron within a novel solenoid microinductor. A design flowchart highlights the primary design principles when developing a microscale magnetic component for DC-DC power converters. Thermal modeling is used to predict the operational conditions that generate undesirable thermal generation within the component. Operating at 0.5MHz, the microinductor achieves an efficiency and power density of 78% and 7.8 W/cm3, respectively.
Resumo:
The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce higher Nusselt numbers and effective heat transfer coefficients. Enhanced cooling efficiency enables the power electronics module to operate at a lower temperature, greatly enhancing long-term reliability. The results obtained through numerical modelling deviates markedly from the experimentally derived data. The disparity is most likely due to the turbulence model selected and further analysis is required, involving evaluation of more advanced turbulence models.