3 resultados para Tandem

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Prediction of tandem mass spectrometric (MS/MS) fragmentation for non-peptidic molecules based on structure is of immense interest to the mass spectrometrist. If a reliable approach to MS/MS prediction could be achieved its impact within the pharmaceutical industry could be immense. Many publications have stressed that the fragmentation of a molecular ion or protonated molecule is a complex process that depends on many parameters, making prediction difficult. Commercial prediction software relies on a collection of general heuristic rules of fragmentation, which involve cleaving every bond in the structure to produce a list of 'expected' masses which can be compared with the experimental data. These approaches do not take into account the thermodynamic or molecular orbital effects that impact on the molecule at the point of protonation which could influence the potential sites of bond cleavage based on the structural motif. A series of compounds have been studied by examining the experimentally derived high-resolution MS/MS data and comparing it with the in silico modelling of the neutral and protonated structures. The effect that protonation at specific sites can have on the bond lengths has also been determined. We have calculated the thermodynamically most stable protonated species and have observed how that information can help predict the cleavage site for that ion. The data have shown that this use of in silico techniques could be a possible way to predict MS/MS spectra. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In recognition of the differences of scale between the welding pool and the heat affected zone along the welding line on one hand, and the overall size of the components being welded on the other, a local-global finite element approach was developed for the evaluation of distortions in laser welded shipbuilding parts. The approach involves the tandem use of a 'local' and a 'global' step. The local step involves a three-dimensional finite element model for the simulation of the laser welding process using the Sysweld finite element code, which takes into account thermal, metallurgical, and mechanical aspects. The simulation of the laser welding process was performed using a non-linear heat transfer analysis, based on a keyhole formation model, and a coupled transient thermomechanical analysis, which takes into account metallurgical transformations using the temperature dependent material properties and the continuous cooling transformation diagram. The size and shape of the keyhole used in the local finite element analysis was evaluated using a keyhole formation model and the Physica finite volume code. The global step involves the transfer of residual plastic strains and the stiffness of the weld obtained from the local model to the global analysis, which then provides the predicted distortions for the whole part. This newly developed methodology was applied to the evaluation of global distortions due to laser welding of stiffeners on a shipbuilding part. The approach has been proved reliable in comparison with experiments and of practical industrial use in terms of computing time and storage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The development of sustainable hydrogen production is a key target in the further facilitation of a hydrogen economy. Solar hydrogen generation through the photolytic splitting of water sensitised by semiconductor materials is attractive as it is both renewable and does not lead to problematic by-products, unlike current hydrogen sources such as natural gas. Consequently, the development of these semiconductor materials has undergone considerable research since their discovery over 30 years ago and it would seem prescient to review the more practical results of this research. Among the critical factors influencing the choice of semiconductor material for photoelectrolysis of water are the band-gap energies, flat band potentials and stability towards photocorrosion; the latter of these points directs us to focus on metal oxides. Careful design of thin films of photocatalyst material can eliminate potential routes of losses in performance, i.e., recombination at grain boundaries. Methods to overcome these problems are discussed such as coupling a photoanode for photolysis of water to a photovoltaic cell in a 'tandem cell' device.