3 resultados para TILT BOUNDARIES

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

TiAl castings are prone to various defects including bubbles entrained during the turbulent filling of moulds. The present research has exploited the principles of the Durville tilt casting technique to develop a novel process in which the Induction Skull Melting (ISM) of TiAl alloys in a vacuum chamber has been combined with controlled tilt pouring to achieve the tranquil transfer of the metal into a hot ceramic shell mould. Practical casting equipment has been developed to evaluate the feasibility of this process in parallel with the development of novel software to simulate and optimize it. The PHYSICA CFD code was used to simulate the filling, heat transfer and solidification during tilt pouring using a number of free surface modelling techniques, including the novel Counter Diffusion Method (CDM). In view of the limited superheat, particular attention was paid to the mould design to minimize heat loss and gas entrainment caused by interaction between the counter-flowing metal and gas streams. The model has been validated against real-time X-ray movies of the tilt casting of aluminium and against TiAl blade castings. Modelling has contributed to designing a mould to promote progressive filling of the casting and has led to the use of a parabolic tilting cycle to balance the competing requirements for rapid filling to minimize the loss of superheat and slow filling minimize the turbulence-induced defects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The tilt-casting method is used to achieve tranquil filling of gamma-TiAl turbine blades. The reactive alloy is melted in a cold crucible using an induction coil and then the complete crucible-mould- running system assembly is rotated through 180degrees to transfer the metal into the mould. The induction current is ramped down gradually as the rotation starts and the mould is preheated to maintain superheat. The liquid metal then enters the mould and the gas within it (argon) escapes through the inlet aperture and through auxiliary vents. Solidification starts as soon the metal enters the mould and it is important to account for this effect to predict and prevent misruns. The rotation rate has to be controlled carefully to allow sufficient time for gas evacuation, but at the same time preserve superheat. This 3-phase system is modelled using the FV method, with a fast implicit numerical scheme used to capture the transient liquid free surface. The enthalpy method is used to model solidification and predict defects such as trapped bubbles, macro-porosity or surface connected porosity. Modeling is used to support an experimental program for the development of a production method for gamma-TiAl blades, with a target length of 40cm. The experiments provide validation for the model and the model in turn optimizes the tilt-casting process. The work is part of the EU project IMPRESS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Research This paper outlines some of the key findings from an evaluation of the project and demonstrates that EC funded projects such as this, which seek to promote cross border collaboration and understanding (i.e. across organisational, sectoral and geographical boundaries) offer considerable learning potential – not least about variances in health politics across different communities. However, for this learning to be realised a comprehensive system of knowledge management needs to be an integral part of project planning alongside a system for sustaining embryonic professional networks. The concept of managing relationships was also a key part of the projects success. Executing a project funded by the EU demands the development of complex organisational skills to negotiate all the administrative challenges en route to successful completion and this project in particular relied for its success on the development of social relationships of trust and mutual respect across national, professional and social boundaries. Context A three–year European Commission funded project designed to exchange a wide range of staff (professional semiprofessional and voluntary staff in health and social care) project led by the University of Greenwich (UK) and the Université Catholique de Lille, France was completed this year (February 2008). The project was complex because it involved working in different national contexts, was multi-disciplinary, and demanded the negotiation of multiple boundaries. Theories A mixed method evaluation including written reports gathered immediately after each exchange visit and a post hoc series of individual interviews and focus groups was conducted in order to gain qualitative information (from the participants perspective) on their experiences and to identify any learning gained. Results Analysis of the data provided evidence of learning on a number of levels; personally, inter and intra professionally and organisationally as well as across sectors and also from a project management perspective. The learning crystallised around the extent of the differences noted by the participants between the UK and the French health and social care systems despite geographical proximity, common membership of the EU and many shared challenges in health and social care. The extent of these differences, noted at every level from policy to practice proved a rich source for reflection on organisational philosophies, ways of working, distribution of resources, professional roles and autonomy and professional registration and mobility - in short on health politics at ‘macro’ and ‘micro’ levels.