5 resultados para Structural assessment

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid-structure interaction (DFSI) is problematical since conventionally computational fluid dynamics (CFD) is solved using finite volume (FV) methods and computational structural mechanics (CSM) is based entirely on finite element (FE) methods. Hence, progress in modelling the emerging multi-physics problem of dynamic fluid-structure interaction in a consistent manner is frustrated and significant problems in computation convergence may be encountered in transferring and filtering data from one mesh and solution procedure to another, unless the fluid-structure coupling is either one way, very weak or both. This paper sets out the solution procedure for modelling the multi-physics dynamic fluid-structure interaction problem within a single software framework PHYSICA, using finite volume, unstructured mesh (FV-UM) procedures and will focus upon some of the problems and issues that have to be resolved for time accurate closely coupled dynamic fluid-structure flutter analysis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computational modelling of dynamic fluid–structure interaction (DFSI) is a considerable challenge. Our approach to this class of problems involves the use of a single software framework for all the phenomena involved, employing finite volume methods on unstructured meshes in three dimensions. This method enables time and space accurate calculations in a consistent manner. One key application of DFSI simulation is the analysis of the onset of flutter in aircraft wings, where the work of Yates et al. [Measured and Calculated Subsonic and Transonic Flutter Characteristics of a 45° degree Sweptback Wing Planform in Air and Freon-12 in the Langley Transonic Dynamic Tunnel. NASA Technical Note D-1616, 1963] on the AGARD 445.6 wing planform still provides the most comprehensive benchmark data available. This paper presents the results of a significant effort to model the onset of flutter for the AGARD 445.6 wing planform geometry. A series of key issues needs to be addressed for this computational approach. • The advantage of using a single mesh, in order to eliminate numerical problems when applying boundary conditions at the fluid-structure interface, is counteracted by the challenge of generating a suitably high quality mesh in both the fluid and structural domains. • The computational effort for this DFSI procedure, in terms of run time and memory requirements, is very significant. Practical simulations require even finer meshes and shorter time steps, requiring parallel implementation for operation on large, high performance parallel systems. • The consistency and completeness of the AGARD data in the public domain is inadequate for use in the validation of DFSI codes when predicting the onset of flutter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, the authors present a crashworthiness assessment and suggestions for modification of a conventionally designed rail vehicle with a driving cab (cab car). The analytical approach, based on numerical analysis, consisted of two stages. Firstly, the crashworthiness of the cab car was assessed by simulating a collision between the cab car and a rigid wall. Then, after analysing structural weaknesses, the design of the cab car was modified and simulated again in the same scenario. It was found that downward bending is an intrinsic weakness in conventional rail vehicles and that jackknifing is a main form of failures in conventional rail vehicle components. The cab car, as modified by the authors, overcomes the original weaknesses and shows the desired progressive collapse behaviour in simulation. The conclusions have general relevance for other studies but more importantly, point to the need for a rethink of some aspects of rail vehicle design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Hurricanes are destructive storms with strong winds, intense storm surges, and heavy rainfall. The resulting impact from a hurricane can include structural damage to buildings and infrastructure, flooding, and ultimately loss of human life. This paper seeks to identify the impact of Hurricane Ivan on the aected population of Grenada, one of the Caribbean islands. Hurricane Ivan made landfall on 7th September 2004 and resulted in 80% of the population being adversely aected. The methods that were used to model these impacts involved performing hazard and risk assessments using GIS and remote sensing techniques. Spatial analyses were used to create a hazard and a risk map. Hazards were identied initially as those caused by storm surges, severe winds speeds, and flooding events related to Hurricane Ivan. These estimated hazards were then used to create a risk map. An innovative approach was adopted, including the use of hillshading to assess the damage caused by high wind speeds. This paper explains in detail the methodology used and the results produced.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For existing reinforced concrete structures exposed to saline or marine conditions, there is an increasing engineering interest in their remaining safety and serviceability. A significant factor is the corrosion of steel reinforcement. At present there is little field experience and other data available. This limits the possibility for developing purely empirical models for strength and performance deterioration for use in structural safety and serviceability assessment. An alternative approach using theoretical concepts and probabilistic modeling is proposed herein. It is based on the evidence that the rate of diffusion of chlorides is influenced by internal damage to the concrete surrounding the reinforcement. This may be due to localized stresses resulting from external loading or through concrete shrinkage. Usually, the net effect is that the time to initiation of active corrosion is shortened, leading to greater localized corrosion and earlier reduction of ultimate capacity and structural stiffness. The proposed procedure is applied to an example beam and compared to experimental observations,including estimates of uncertainty in the remaining ultimate moment capacity and beam stiffness. Reasonably good agreement between the results of the proposed procedure and the experiment was found