1 resultado para Statistical parameters
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- JISC Information Environment Repository (1)
- Adam Mickiewicz University Repository (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Aquatic Commons (9)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (1)
- Archimer: Archive de l'Institut francais de recherche pour l'exploitation de la mer (1)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Aston University Research Archive (10)
- Biblioteca de Teses e Dissertações da USP (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (6)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (7)
- Biblioteca Digital de la Universidad Católica Argentina (1)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (5)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (3)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (67)
- CentAUR: Central Archive University of Reading - UK (6)
- Central European University - Research Support Scheme (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (41)
- Cochin University of Science & Technology (CUSAT), India (5)
- Collection Of Biostatistics Research Archive (1)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (2)
- Digital Commons at Florida International University (3)
- DigitalCommons@The Texas Medical Center (6)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (1)
- Duke University (1)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (21)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (35)
- Illinois Digital Environment for Access to Learning and Scholarship Repository (1)
- Indian Institute of Science - Bangalore - Índia (235)
- Institutional Repository of Leibniz University Hannover (1)
- Instituto de Engenharia Nuclear, Brazil - Carpe dIEN (1)
- Massachusetts Institute of Technology (3)
- National Center for Biotechnology Information - NCBI (2)
- Publishing Network for Geoscientific & Environmental Data (21)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (15)
- Queensland University of Technology - ePrints Archive (339)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- REPOSITORIO DIGITAL IMARPE - INSTITUTO DEL MAR DEL PERÚ, Peru (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (47)
- Universidad Politécnica de Madrid (15)
- Universidade Estadual Paulista "Júlio de Mesquita Filho" (UNESP) (1)
- Universidade Federal do Pará (5)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Montréal, Canada (7)
- University of Michigan (1)
- University of Queensland eSpace - Australia (5)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Relevância:
Resumo:
Forest fires can cause extensive damage to natural resources and properties. They can also destroy wildlife habitat, affect the forest ecosystem and threaten human lives. In this paper extreme wildland fires are analysed using a point process model for extremes. The model based on a generalised Pareto distribution is used to model data on acres of wildland burnt by extreme fire in the US since 1825. A semi-parametric smoothing approach is adapted with maximum likelihood method to estimate model parameters.