1 resultado para Spontaneous Regression
em Greenwich Academic Literature Archive - UK
Filtro por publicador
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (4)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (1)
- Applied Math and Science Education Repository - Washington - USA (2)
- Aquatic Commons (5)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (33)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (40)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (110)
- Boston University Digital Common (1)
- CaltechTHESIS (2)
- Cambridge University Engineering Department Publications Database (85)
- CentAUR: Central Archive University of Reading - UK (72)
- Centro Hospitalar do Porto (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (58)
- Cochin University of Science & Technology (CUSAT), India (4)
- Collection Of Biostatistics Research Archive (24)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- Dalarna University College Electronic Archive (2)
- Department of Computer Science E-Repository - King's College London, Strand, London (1)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (2)
- Digital Commons - Michigan Tech (3)
- Digital Commons - Montana Tech (1)
- Digital Knowledge Repository of Central Drug Research Institute (1)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (7)
- DigitalCommons@University of Nebraska - Lincoln (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- Duke University (4)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (8)
- Indian Institute of Science - Bangalore - Índia (39)
- Instituto Politécnico do Porto, Portugal (2)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (3)
- Ministerio de Cultura, Spain (7)
- National Center for Biotechnology Information - NCBI (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (86)
- Queensland University of Technology - ePrints Archive (84)
- RDBU - Repositório Digital da Biblioteca da Unisinos (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (6)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (146)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- School of Medicine, Washington University, United States (6)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (1)
- Universidad del Rosario, Colombia (2)
- Universidade de Lisboa - Repositório Aberto (1)
- Universidade Federal do Pará (3)
- Universitat de Girona, Spain (4)
- Université de Lausanne, Switzerland (10)
- Université de Montréal, Canada (11)
- University of Queensland eSpace - Australia (1)
- University of Southampton, United Kingdom (4)
- Worcester Research and Publications - Worcester Research and Publications - UK (2)
Resumo:
Software metrics are the key tool in software quality management. In this paper, we propose to use support vector machines for regression applied to software metrics to predict software quality. In experiments we compare this method with other regression techniques such as Multivariate Linear Regression, Conjunctive Rule and Locally Weighted Regression. Results on benchmark dataset MIS, using mean absolute error, and correlation coefficient as regression performance measures, indicate that support vector machines regression is a promising technique for software quality prediction. In addition, our investigation of PCA based metrics extraction shows that using the first few Principal Components (PC) we can still get relatively good performance.