6 resultados para Sparse distributed memory
em Greenwich Academic Literature Archive - UK
Resumo:
A large class of computational problems are characterised by frequent synchronisation, and computational requirements which change as a function of time. When such a problem is solved on a message passing multiprocessor machine [5], the combination of these characteristics leads to system performance which deteriorate in time. As the communication performance of parallel hardware steadily improves so load balance becomes a dominant factor in obtaining high parallel efficiency. Performance can be improved with periodic redistribution of computational load; however, redistribution can sometimes be very costly. We study the issue of deciding when to invoke a global load re-balancing mechanism. Such a decision policy must actively weigh the costs of remapping against the performance benefits, and should be general enough to apply automatically to a wide range of computations. This paper discusses a generic strategy for Dynamic Load Balancing (DLB) in unstructured mesh computational mechanics applications. The strategy is intended to handle varying levels of load changes throughout the run. The major issues involved in a generic dynamic load balancing scheme will be investigated together with techniques to automate the implementation of a dynamic load balancing mechanism within the Computer Aided Parallelisation Tools (CAPTools) environment, which is a semi-automatic tool for parallelisation of mesh based FORTRAN codes.
Resumo:
As the complexity of parallel applications increase, the performance limitations resulting from computational load imbalance become dominant. Mapping the problem space to the processors in a parallel machine in a manner that balances the workload of each processors will typically reduce the run-time. In many cases the computation time required for a given calculation cannot be predetermined even at run-time and so static partition of the problem returns poor performance. For problems in which the computational load across the discretisation is dynamic and inhomogeneous, for example multi-physics problems involving fluid and solid mechanics with phase changes, the workload for a static subdomain will change over the course of a computation and cannot be estimated beforehand. For such applications the mapping of loads to process is required to change dynamically, at run-time in order to maintain reasonable efficiency. The issue of dynamic load balancing are examined in the context of PHYSICA, a three dimensional unstructured mesh multi-physics continuum mechanics computational modelling code.
Resumo:
A method is outlined for optimising graph partitions which arise in mapping unstructured mesh calculations to parallel computers. The method employs a relative gain iterative technique to both evenly balance the workload and minimise the number and volume of interprocessor communications. A parallel graph reduction technique is also briefly described and can be used to give a global perspective to the optimisation. The algorithms work efficiently in parallel as well as sequentially and when combined with a fast direct partitioning technique (such as the Greedy algorithm) to give an initial partition, the resulting two-stage process proves itself to be both a powerful and flexible solution to the static graph-partitioning problem. Experiments indicate that the resulting parallel code can provide high quality partitions, independent of the initial partition, within a few seconds. The algorithms can also be used for dynamic load-balancing, reusing existing partitions and in this case the procedures are much faster than static techniques, provide partitions of similar or higher quality and, in comparison, involve the migration of a fraction of the data.
Resumo:
Unstructured mesh based codes for the modelling of continuum physics phenomena have evolved to provide the facility to model complex interacting systems. Such codes have the potential to provide a high performance on parallel platforms for a small investment in programming. The critical parameters for success are to minimise changes to the code to allow for maintenance while providing high parallel efficiency, scalability to large numbers of processors and portability to a wide range of platforms. The paradigm of domain decomposition with message passing has for some time been demonstrated to provide a high level of efficiency, scalability and portability across shared and distributed memory systems without the need to re-author the code into a new language. This paper addresses these issues in the parallelisation of a complex three dimensional unstructured mesh Finite Volume multiphysics code and discusses the implications of automating the parallelisation process.
Resumo:
The difficulties encountered in implementing large scale CM codes on multiprocessor systems are now fairly well understood. Despite the claims of shared memory architecture manufacturers to provide effective parallelizing compilers, these have not proved to be adequate for large or complex programs. Significant programmer effort is usually required to achieve reasonable parallel efficiencies on significant numbers of processors. The paradigm of Single Program Multi Data (SPMD) domain decomposition with message passing, where each processor runs the same code on a subdomain of the problem, communicating through exchange of messages, has for some time been demonstrated to provide the required level of efficiency, scalability, and portability across both shared and distributed memory systems, without the need to re-author the code into a new language or even to support differing message passing implementations. Extension of the methods into three dimensions has been enabled through the engineering of PHYSICA, a framework for supporting 3D, unstructured mesh and continuum mechanics modeling. In PHYSICA, six inspectors are used. Part of the challenge for automation of parallelization is being able to prove the equivalence of inspectors so that they can be merged into as few as possible.
Resumo:
As the efficiency of parallel software increases it is becoming common to measure near linear speedup for many applications. For a problem size N on P processors then with software running at O(N=P ) the performance restrictions due to file i/o systems and mesh decomposition running at O(N) become increasingly apparent especially for large P . For distributed memory parallel systems an additional limit to scalability results from the finite memory size available for i/o scatter/gather operations. Simple strategies developed to address the scalability of scatter/gather operations for unstructured mesh based applications have been extended to provide scalable mesh decomposition through the development of a parallel graph partitioning code, JOSTLE [8]. The focus of this work is directed towards the development of generic strategies that can be incorporated into the Computer Aided Parallelisation Tools (CAPTools) project.