2 resultados para Solid waste landfill

em Greenwich Academic Literature Archive - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The increasing volumes of municipal solid waste produced worldwide are encouraging the development of processes to reduce the environmental impact of this waste stream. Combustion technology can facilitate volume reduction of up to 90%, with the inorganic contaminants being captured in furnace bottom ash, and fly ash/APC residues. The disposal or reuse of these residues is however governed by the potential release of constituent contaminants into the environment. Accelerated carbonation has been shown to have a potential for improving the chemical stability and leaching behaviour of both bottom ash and fly ash/APC residues. However, the efficacy of carbonation depends on whether the method of gas application is direct or indirect. Also important are the mineralogy, chemistry and physical properties of the fresh ash, the carbonation reaction conditions such as temperature, contact time, CO2 partial pressure and relative humidity. This paper reviews the main issues pertaining to the application of accelerated carbonation to municipal waste combustion residues to elucidate the potential benefits on the stabilization of such residues and for reducing CO2 emissions. In particular, the modification of ash properties that occur upon carbonation and the CO2 sequestration potential possible under different conditions are discussed. Although accelerated carbonation is a developing technology, it could be introduced in new incinerator facilities as a "finishing step" for both ash treatment and reduction of CO2 emissions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The efficient remediation of heavy metal-bearing sediment has been one of top priorities of ecosystem protection. Cement-based solidification/stabilization (s/s) is an option for reducing the mobility of heavy metals in the sediment and the subsequent hazard for human beings and animals. This work uses sodium carbonate as an internal carbon source of accelerated carbonation and gaseous CO2 as an external carbon source to overcome deleterious effects of heavy metals on strength development and improve the effectiveness of s/s of heavy metal-bearing sediment. In addition to the compressive strength and porosity measurements, leaching tests followed the Chinese solid waste extraction procedure for leaching toxicity - sulfuric acid and nitric acid method (HJ/T299-2007), German leaching procedure (DIN38414-S4) and US toxicity characteristic leaching procedures (TCLP) have been conducted. The experimental results indicated that the solidified sediment by accelerated carbonation was capable of reaching all performance criteria for the disposal at a Portland cement dosage of 10 wt.% and a solid/water ratio of 1: 1. The concentrations of mercury and other heavy metals in the leachates were below 0.10 mg/L and 5 mg/L, respectively, complying with Chinese regulatory level (GB5085-2007). Compared to the hydration, accelerated carbonation improved the compressive strength of the solidified sediment by more than 100% and reduced leaching concentrations of heavy metals significantly. It is considered that accelerated carbonation technology with a combination of Na2CO3 and CO2 may practically apply to cement-based s/s of heavy metal-bearing sediment. (C) 2008 Elsevier B.V. All rights reserved.