75 resultados para Solder and soldering
em Greenwich Academic Literature Archive - UK
Resumo:
The stencil printing process is an important process in the assembly of Surface Mount Technology (SMT)devices. There is a wide agreement in the industry that the paste printing process accounts for the majority of assembly defects. Experience with this process has shown that typically over 60% of all soldering defects are due to problems associated with the flow properties of solder pastes. Therefore, the rheological measurements can be used as a tool to study the deformation or flow experienced by the pastes during the stencil printing process. This paper presents results on the thixotropic behaviour of three pastes; lead-based solder paste, lead-free solder paste and isotropic conductive adhesive (ICA). These materials are widely used as interconnect medium in the electronics industry. Solder paste are metal alloys suspended in a flux medium while the ICAs consist of silver flakes dispersed in an epoxy resin. The thixotropy behaviour was investigated through two rheological test; (i) hysteresis loop test and (ii) steady shear rate test. In the hysteresis loop test, the shear rate were increased from 0.001 to 100s-1 and then decreased from 100 to 0.001s-1. Meanwhile, in the steady shear rate test, the materials were subjected to a constant shear rate of 0.100, 100 and 0.001s-1 for a period of 240 seconds. All the pastes showed a high degree of shear thinning behaviour with time. This might be due to the agglomeration of particles in the flux or epoxy resin that prohibits pastes flow under low shear rate. The action of high shear rate would break the agglomerates into smaller pieces which facilitates the flow of pastes, thus viscosity is reduced at high shear rate. The solder pastes exhibited a higher degree of structural breakdown compared to the ICAs. The area between the up curve and down curve in the hysteresis curve is an indication of the thixotropic behavior of the pastes. Among the three pastes, lead-free solder paste showed the largest area between the down curve and up curve, which indicating a larger structural breakdown in the pastes, followed by lead-based solder paste and ICA. In a steady shear rate test, viscosity of ICA showed the best recovery with the steeper curve to its original viscosity after the removal of shear, which indicating that the dispersion quality in ICA is good because the high shear has little effect on the microstructure of ICA. In contrast, lead-based paste showed the poorest recovery which means this paste undergo larger structural breakdown and dispersion quality in this paste is poor because the microstructure of the paste is easily disrupted by high shear. The structural breakdown during the application of shear and the recovery after removal of shear is an important characteristic in the paste printing process. If the paste’s viscosity can drop low enough, it may contribute to the aperture filling and quick recovery may prevent slumping.
Resumo:
The wettability of newly developed Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu and Ni substrates was assessed through the wetting balance tests. The wettability assessment parameters such as contact angle (ϑc) and maximum wetting force (Fw) were documented for three solder bath temperatures with three commercial fluxes, namely, no-clean (NC), nonactivated (R), and water-soluble organic acid flux (WS). It was found that the lead-free Sn-2.8Ag-0.5Cu-1.0Bi solder exhibited less wetting force, i.e., poorer wettability, than the conventional Sn-37Pb solder for all flux types and solder bath temperatures. The wettability of Sn-2.8Ag-0.5Cu-1.0Bi lead-free solder on Cu substrate was much higher than that on Ni substrate. Nonwetting for Sn-2.8Ag-0.5Cu-1.0Bi and Sn-Pb solders on Ni substrate occurred when R-type flux was used. A model was built and simulations were performed for the wetting balance test. The simulation results were found very close to the experimental results. It was also observed that larger values of immersion depth resulted in a decrease of the wetting force and corresponding meniscus height, whereas the increase in substrate perimeter enhanced the wettability. The wetting reactions between the solder and Cu/Ni substrates were also investigated, and it was found that Cu atoms diffused into the solder through the intermetallic compounds (IMCs) much faster than did the Ni atoms. Rapid formation of IMCs inhibited the wettability of Sn-2.8Ag-0.5Cu-1.0Bi solder compared to the Sn-Pb solder.
Resumo:
Solder constitutive models are important as they are widely used in FEA simulations to predict the lifetime of soldered assemblies. This paper briefly reviews some common constitutive laws to capture creep in solder and presents work on laws capturing both kinematic hardening and damage. Inverse analysis is used to determine constants for the kinematic hardening law which match experimental creep curves. The mesh dependence of the damage law is overcome by using volume averaging and is applied to predict the crack path in a thermal cycled resistor component
Resumo:
This paper evaluates the shearing behavior of ball grid array (BGA) solder joints on Au/Ni/Cu pads of FR4 substrates after multiple reflow soldering. A new Pb-free solder, Sn–3Ag–0.5Cu–8In (SACI), has been compared with Sn–3Ag–0.5Cu (SAC) and Sn–37Pb (SP) solders, in terms of fracture surfaces, shearing forces and microstructures. Three failure modes, ball cut, a combination of solder shear and solder/pad bond separation, and pad lift, are assessed for the different solders and reflow cycles. It is found that the shearing forces of the SP and SAC solder joints tend to increase slightly with an increase in the number of reflow cycles due to diffusion-induced solid solution strengthening of the bulk solder and augmentation of the shearing area. However, the shearing forces of the SACI solder joints decrease slightly after four cycles of reflow, which is ascribed to the thermal degradation of both the solder/intermetallic compound (IMC) and IMC/Ni interfaces. The SACI solder joints yield the highest strengths, whereas the SP solder joints give the smallest values, irrespective of the number of reflow cycles. Thickening of the interfacial IMC layer and coarsening of the dispersing IMC particles within the bulk solders were also observed. Nevertheless, the variation of shearing forces and IMC thickness with different numbers of reflow cycles was not so significant since the Ni under layer acted as an effective diffusion barrier. In addition, the initially-formed IMC layer retarded the further extensive dissolution of the pad material and its interaction with the solder
Resumo:
In the flip-chip assembly process, no-flow underfill materials have a particular advantage over traditional underfills as the application and curing of this type of underfill can be undertaken before and during the reflow process - adding high volume throughput. Adopting a no-flow underfill process may result in underfill entrapment between solder and fluid, voiding in the underfill, a possible delamination between underfill and surrounding surfaces. The magnitude of these phenomena may adversely affect the reliability of the assembly in terms of solder joint thermal fatigue. This paper presents both an experimental and mdeling analysis investigating the reliabity of a flip-chip component and how the magnitude of underfill entrapment may affect thermal-mechanical fatigue life.
Resumo:
The growth behavior of intermetallic layer with or without adding 0.3 wt% Ni into the Sn-0.7Cu solder was studied during the wetting reaction on Cu-substrate and thereafter in solid-state aging condition. The Cu-solder reaction couple was prepared at 255, 275 and 295 °C for 10 s. The samples reacted at 255 °C were then isothermally aged for 2-14 days at 150 °C. The reaction species formed for the Sn-0.7Cu/Cu and Sn-0.7Cu-0.3Ni/Cu soldering systems were Cu6Sn5 and (CuNi)6Sn5, respectively. The thickness of the intermetallic compounds formed at the solder/Cu interfaces and also in the bulk of both solders increased with the increase of reaction temperature. It was found that Ni-containing Sn-0.7Cu solder exhibited lower growth of intermetallic layer during wetting and in the early stage of aging and eventually exceeded the intermetallic layer thickness of Sn-0.7Cu/Cu soldering system after 6 days of aging. As the aging time proceeds, a non-uniform intermetallic layer growth tendency was observed for the case of Sn-0.7Cu-0.3Ni solder. The growth behavior of intermetallic layer during aging for both solders followed the diffusion-controlled mechanism. The intermetallic layer growth rate constants for Sn-0.7Cu and Sn-0.7Cu-0.3Ni solders were calculated as 1.41 × 10-17 and 1.89 × 10-17 m2/s, respectively which indicated that adding 0.3 wt% Ni with Sn-0.7Cu solder contributed to the higher growth of intermetallic layer during aging. © 2006 Elsevier B.V. All rights reserved.
Resumo:
The formation and growth of intermetallic compound layer thickness is one of the important issues in search for reliable electronic and electrical connections. Intermetallic compounds (IMCs) are an essential part of solder joints. At low levels, they have a strengthening effect on the joint; but at higher levels, they tend to make solder joints more brittle. If the solder joint is subjected to long-standing exposure of high temperature, this could result in continuous growth of intermetallic compound layer. The brittle intermetallic compound layer formed in this way is very much prone to fracture and cold therefore lead to mechanical and electrical failure of the joint. Therefore, the primary aim of this study is to investigate the growth of intermetallic compound layer thickness subjected to five different reflow profiles. The study also looks at the effect of three different temperature cycles (with maximum cycle temperature of 25 0C, 40 0C and 60 0C) on intermetallic compound formation and their growth behaviour.. Two different Sn-Ag-Cu solder pastes (namely paste P1 and paste P2) which were different in flux medium, were used for the study. The result showed that the growth of intermetallic compound layer thickness was a function of ageing temperature. It was found that the rate of growth of intermetallic compound layer thickness of paste P1 was higher than paste P2 at the same temperature condition. This behaviour could be related to the differences in flux mediums of solder paste samples used.
Resumo:
Solder materials are used to provide a connection between electronic components and printed circuit boards (PCBs) using either the reflow or wave soldering process. As a board assembly passes through a reflow furnace the solder (initially in the form of solder paste) melts, reflows, then solidifies, and finally deforms between the chip and board. A number of defects may occur during this process such as flux entrapment, void formation, and cracking of the joint, chip or board. These defects are a serious concern to industry, especially with trends towards increasing component miniaturisation and smaller pitch sizes. This paper presents a modelling methodology for predicting solder joint shape, solidification, and deformation (stress) during the assembly process.
Resumo:
Soldering technologies continue to evolve to meet the demands of the continuous miniaturisation of electronic products, particularly in the area of solder paste formulations used in the reflow soldering of surface mount devices. Stencil printing continues to be a leading process used for the deposition of solder paste onto printed circuit boards (PCBs) in the volume production of electronic assemblies, despite problems in achieving a consistent print quality at an ultra-fine pitch. In order to eliminate these defects a good understanding of the processes involved in printing is important. Computational simulations may complement experimental print trials and paste characterisation studies, and provide an extra dimension to the understanding of the process. The characteristics and flow properties of solder pastes depend primarily on their chemical and physical composition and good material property data is essential for meaningful results to be obtained by computational simulation.This paper describes paste characterisation and computational simulation studies that have been undertaken through the collaboration of the School of Aeronautical, Mechanical and Manufacturing Engineering at Salford University and the Centre for Numerical Modelling and Process Analysis at the University of Greenwich. The rheological profile of two different paste formulations (lead and lead-free) for sub 100 micron flip-chip devices are tested and applied to computational simulations of their flow behaviour during the printing process.
Resumo:
This paper details and demonstrates integrated optimisation-reliability modelling for predicting the performance of solder joints in electronic packaging. This integrated modelling approach is used to identify efficiently and quickly the most suitable design parameters for solder joint performance during thermal cycling and is demonstrated on flip-chip components using “no-flow” underfills. To implement “optimisation in reliability” approach, the finite element simulation tool – PHYSICA, is coupled with optimisation and statistical tools. This resulting framework is capable of performing design optimisation procedures in an entirely automated and systematic manner.
Resumo:
For sensitive optoelectronic components, traditional soldering techniques cannot be used because of their inherent sensitivity to thermal stresses. One such component is the Optoelectronic Butterfly Package which houses a laser diode chip aligned to a fibre-optic cable. Even sub-micron misalignment of the fibre optic and laser diode chip can significantly reduce the performance of the device. The high cost of each unit requires that the number of damaged components, via the laser soldering process, are kept to a minimum. Mathematical modelling is undertaken to better understand the laser soldering process and to optimize operational parameters such as solder paste volume, copper pad dimensions, laser solder times for each joint, laser intensity and absorption coefficient. Validation of the model against experimental data will be completed, and will lead to an optimization of the assembly process, through an iterative modelling cycle. This will ultimately reduce costs, improve the process development time and increase consistency in the laser soldering process.
Resumo:
Compuational fluid dynamics (CFD) is used to help understand the gas flow characteristics in the wave soldering process. CFD has the ability to calculate (1) heal transfer, (2) fluid dynamics, and (3) oxygen concentration throughout the wave soldering machine. Understanding the impact of fluid dynamics on oxygen concentration is important as excessive oxygen at the solder bath can lead to high dross contents and hence poor solder joint quality on the printed circuit board. This paper describes the CFD modelling approach and illustrates its capability for a machine which has nitrogen injectors near the solder bath. Different magnitiutes of nitrogen flow rates are investigated and it is demonstrated how these effect the oxygen concentration at the bath surface.
Resumo:
This paper investigates an isothermal fatigue test for solder joints developed at the NPL. The test specimen is a lap joint between two copper arms. During the test the displacement at the ends of the copper are controlled and the force measured. The modeling results in the paper show that the displacement across the solder joint is not equal to the displacement applied at the end of the specimen. This is due to deformation within the copper arms. A method is described to compensate for this difference. The strain distribution in the solder was determined by finite element analysis and compared to the distribution generated by a theoretical 'ideal' test which generates an almost pure shear mode in the solder. By using a damage-based constitutive law the shape of the crack generated in the specimen has been predicted for both the actual test and the ideal pure shear test. Results from the simulations are also compared with experimental data using SnAgCu solder.
Resumo:
Nitrogen is now used in wave soldering machines to help lower the amount of dross that can be formed on the solder bath surface. The paper provides details on the use of computational fluid dynamics in helping understand the flow profiles of nitrogen in a wave soldering machine and to predict the concentration of nitrogen and oxygen around the solder bath.
Resumo:
Flexible Circuit Boards (FPCs) are now being widely used in the electronic industries especially in the areas of electronic packages. Due to European lead-free legislation which has been implemented since July 2006, electronic packaging industries have to switch to use in the lead-free soldering technology. This change has posed a number of challenges in terms of development of lead-free solders and compatible substrates. An increase of at least 20-50 degrees in the reflow temperature is a concern and substantial research is required to investigate a sustainable design of flexible circuit boards as carrier substrates. This paper investigates a number of design variables such as copper conductor width, type of substrate materials, effect of insulating materials, etc. Computer modeling has been used to investigate thermo-mechanical behavior, and reliability, of flexible substrates after they have been subjected to a lead- free solder processing. Results will show particular designs that behave better for a particular rise in peak reflow temperature. Also presented will be the types of failures that can occur in these substrates and what particular materials are more reliable.