6 resultados para Solar cooling

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper will discuss Computational Fluid Dynamics (CFD) results from an investigation into the accuracy of several turbulence models to predict air cooling for electronic packages and systems. Also new transitional turbulence models will be proposed with emphasis on hybrid techniques that use the k-ε model at an appropriate distance away from the wall and suitable models, with wall functions, near wall regions. A major proportion of heat emitted from electronic packages can be extracted by air cooling. This flow of air throughout an electronic system and the heat extracted is highly dependent on the nature of turbulence present in the flow. The use of CFD for such investigations is fast becoming a powerful and almost essential tool for the design, development and optimization of engineering applications. However turbulence models remain a key issue when tackling such flow phenomena. The reliability of CFD analysis depends heavily on the turbulence model employed together with the wall functions implemented. In order to resolve the abrupt fluctuations experienced by the turbulent energy and other parameters located at near wall regions and shear layers a particularly fine computational mesh is necessary which inevitably increases the computer storage and run-time requirements. The PHYSICA Finite Volume code was used for this investigation. With the exception of the k-ε and k-ω models which are available as standard within PHYSICA, all other turbulence models mentioned were implemented via the source code by the authors. The LVEL, LVEL CAP, Wolfshtein, k-ε, k-ω, SST and kε/kl models are described and compared with experimental data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper is intended to provide a general review of the current capabilities of turbulence models within the specific area of electronic cooling. The work discussed in this paper is aimed at examining currently available turbulence models and the formulation of a new two-layer hybrid kElki model which is specifically designed for electronic application areas. A classic backward facing step configuration will be used to evaluate the performance of the turbulence models in the prediction of separated flows. The preliminary results suggest that the hybrid ke/kl turbulence model is a promising zonal model to pursue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of an innovative jet impingement cooling system in a power electronics application is investigated using numerical analysis. The jet impingement system, outlined by Skuriat et al, consists of a series of cells each containing an array of holes. Cooling fluid is forced through the device, forming an array of impingement jets. The jets are arranged in a manner, which induces a high degree of mixing in the interface boundary layer. This increase in turbulent mixing is intended to induce higher Nusselt numbers and effective heat transfer coefficients. Enhanced cooling efficiency enables the power electronics module to operate at a lower temperature, greatly enhancing long-term reliability. The results obtained through numerical modelling deviates markedly from the experimentally derived data. The disparity is most likely due to the turbulence model selected and further analysis is required, involving evaluation of more advanced turbulence models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spherical silicon solar cells are expected to serve as a technology to reduce silicon usage of photovoltaic (PV) power systems[1, 2, 3]. In order to establish the spherical silicon solar cell, a manufacturing method of uniformly sized silicon particles of 1mm in diameter is required. However, it is difficult to mass-produce the mono-sized silicon particles at low cost by existent processes now. We proposed a new method to generate liquid metal droplets uniformly by applying electromagnetic pinch force to a liquid metal jet[4]. The electromagnetic force was intermittently applied to the liquid metal jet issued from a nozzle in order to fluctuate the surface of the jet. As the fluctuation grew, the liquid jet was broken up into small droplets according to a frequency of the intermittent electromagnetic force. Firstly, a preliminary experiment was carried out. A single pulse current was applied instantaneously to a single turn coil around a molten gallium jet. It was confirmed that the jet could be split up by pinch force generated by the current. And then, electromagnetic pinch force was applied intermittently to the jet. It was found that the jet was broken up into mono-sized droplets in the case of a force frequency was equal to a critical frequency[5], which corresponds to a natural disturbance wave length of the jet. Numerical simulations of the droplet generation from the liquid jet were then carried out, which consisted of an electromagnetic analysis and a fluid flow calculation with a free surface of the jet. The simulation results were compared with the experiments and the agreement between the two was quite good.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article charts the development of the use of thin films of nanoparticulate WO3 and how they have been used to overcome problems associated with other photocatalytic materials and bulk WO3. Current technology is described and the authors' views on the outlook for future development is suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The development of sustainable hydrogen production is a key target in the further facilitation of a hydrogen economy. Solar hydrogen generation through the photolytic splitting of water sensitised by semiconductor materials is attractive as it is both renewable and does not lead to problematic by-products, unlike current hydrogen sources such as natural gas. Consequently, the development of these semiconductor materials has undergone considerable research since their discovery over 30 years ago and it would seem prescient to review the more practical results of this research. Among the critical factors influencing the choice of semiconductor material for photoelectrolysis of water are the band-gap energies, flat band potentials and stability towards photocorrosion; the latter of these points directs us to focus on metal oxides. Careful design of thin films of photocatalyst material can eliminate potential routes of losses in performance, i.e., recombination at grain boundaries. Methods to overcome these problems are discussed such as coupling a photoanode for photolysis of water to a photovoltaic cell in a 'tandem cell' device.