5 resultados para Smelting furnaces

em Greenwich Academic Literature Archive - UK


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The use of computational modelling in examining process engineering issues is very powerful. It has been used in the development of the HIsmelt process from its concept. It is desirable to further water-cool the HIsmelt vessel to reduce downtime for replacing refractory. Water-cooled elements close to a metal bath run the risk of failure. This generally occurs when a process perturbation causes the freeze and refractory layers to come away from the water-cooled element, which is then exposed to liquid metal. The element fails as they are unable to remove all the heat. Modelling of the water-cooled element involves modelling the heat transfer, fluid flow, stress and solidification for a localised section of the reaction vessel. The complex interaction between the liquid slag and the refractory applied to the outside of thewater-cooled element is also being examined to model the wear of this layer. The model is being constructed in Physica, a CFD code developed at the University of Greenwich. Modelling of this system has commenced with modelling solidification test cases. These test cases have been used to validate the CFD code’s capability to model the solidification in this system. A model to track the penetration of slag into refractory has also been developed and tested.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

There are many processes, particularly in the nuclear and metals processing industries, where electromagnetic fields are used to influence the flow behaviour of a fluid. Procedures exploiting finite volume (FV) methods in both structured and unstructured meshes have recently been developed which enable this influence to be modelled in the context of conventional FV CFD codes. A range of problems have been tackled by the authors, including electromagnetic pumps and brakes, weirs and dams in steelmaking tundishes and interface effects in aluminium smelting cells. Two cases are presented here, which exemplify the application of the new procedures. The first case investigates the influence of electromagnetic fields on solidification front progression in a tin casting and the second case shows how the liquid metals free surface may be controlled through an externally imposed magnetic field in the semi-levitation casting process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A casting route is often the most cost-effective means of producing engineering components. However, certain materials, particularly those based on Ti, TiAl and Zr alloy systems, are very reactive in the molten condition and must be melted in special furnaces. Induction Skull Melting (ISM) is the most widely-used process for melting these alloys prior to casting components such as turbine blades, engine valves, turbocharger rotors and medical prostheses. A major research project is underway with the specific target of developing robust techniques for casting TiAl components. The aims include increasing the superheat in the molten metal to allow thin section components to be cast, improving the quality of the cast components and increasing the energy efficiency of the process. As part of this, the University of Greenwich (UK) is developing a computer model of the ISM process in close collaboration with the University of Birmingham (UK) where extensive melting trials are being undertaken. This paper describes the experimental measurements to obtain data to feed into and to validate the model. These include measurements of the true RMS current applied to the induction coil, the heat transfer from the molten metal to the crucible cooling water, and the shape of the column of semi-levitated molten metal. Data are presented for Al, Ni and TiAl.