4 resultados para Self-exciting Model

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the current study was to evaluate the potential of the dynamic lipolysis model to simulate the absorption of a poorly soluble model drug compound, probucol, from three lipid-based formulations and to predict the in vitro-in vivo correlation (IVIVC) using neuro-fuzzy networks. An oil solution and two self-micro and nano-emulsifying drug delivery systems were tested in the lipolysis model. The release of probucol to the aqueous (micellar) phase was monitored during the progress of lipolysis. These release profiles compared with plasma profiles obtained in a previous bioavailability study conducted in mini-pigs at the same conditions. The release rate and extent of release from the oil formulation were found to be significantly lower than from SMEDDS and SNEDDS. The rank order of probucol released (SMEDDS approximately SNEDDS > oil formulation) was similar to the rank order of bioavailability from the in vivo study. The employed neuro-fuzzy model (AFM-IVIVC) achieved significantly high prediction ability for different data formations (correlation greater than 0.91 and prediction error close to zero), without employing complex configurations. These preliminary results suggest that the dynamic lipolysis model combined with the AFM-IVIVC can be a useful tool in the prediction of the in vivo behavior of lipid-based formulations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One thing is (a) to develop a system that handles some task to one's satisfaction, and also has a universally recognized myrthful side to its output. Another thing is (b) to provide an analysis of why you are getting such a byproduct. Yet another thing is (c) to develop a model that incorporates reflection about some phenomenon in humor for its own sake. This paper selects for discussion especially Alibi, going on to describe the preliminaries of Columbus. The former, which fits in (a), is a planner with an explanatory capability. It invents pretexts. It's no legal defense, but it is relevant to evidential thinking in AI & Law. Some of the output pretext are myrthful. Not in the sense they are silly: they are not. A key factor seems to be the very alacrity at explaining out detail after detail of globally damning evidence. I attempt a reanalysis of Alibi in respect of (b). As to Columbus, it fits instead in (c). We introduce here the basics of this (unimplemented) model, developed to account for a sample text in parody.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many Web applications walk the thin line between the need for dynamic data and the need to meet user performance expectations. In environments where funds are not available to constantly upgrade hardware inline with user demand, alternative approaches need to be considered. This paper introduces a ‘Data farming’ model whereby dynamic data, which is ‘grown’ in operational applications, is ‘harvested’ and ‘packaged’ for various consumer markets. Like any well managed agricultural operation, crops are harvested according to historical and perceived demand as inferred by a self-optimising process. This approach aims to make enhanced use of available resources through better utlilisation of system downtime - thereby improving application performance and increasing the availability of key business data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-alignment of soldered electronic components such as flip-chips (FC), ball grid arrays (BGA) and optoelectronic devices during solder reflow is important as it ensures good alignment between components and substrates. Two uncoupled analytical models are presented which provide estimates of the dynamic time scales of both the chip and the solder in the self-alignment process. These predicted time scales can be used to decide whether a coupled dynamic analysis is required for the analysis of the chip motion. In this paper, we will show that for flip-chips, the alignment dynamics can be described accurately only when the chip motion is coupled with the solder motion because the two have similar time-scale values. To study this coupled phenomenon, a dynamic modeling method has been developed. The modeling results show that the uncoupled and coupled calculations result in significantly different predictions. The calculations based on the coupled model predict much faster rates of alignment than those predicted using the uncoupled approach.