2 resultados para Selected area electron diffraction (SAED)

em Greenwich Academic Literature Archive - UK


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The high-intensity, high-resolution x-ray source at the European Synchrotron Radiation Facility (ESRF) has been used in x-ray diffraction (XRD) experiments to detect intermetallic compounds (IMCs) in lead-free solder bumps. The IMCs found in 95.5Sn3.8Ag0.7Cu solder bumps on Cu pads with electroplated-nickel immersion-gold (ENIG) surface finish are consistent with results based on traditional destructive methods. Moreover, after positive identification of the IMCs from the diffraction data, spatial distribution plots over the entire bump were obtained. These spatial distributions for selected intermetallic phases display the layer thickness and confirm the locations of the IMCs. For isothermally aged solder samples, results have shown that much thicker layers of IMCs have grown from the pad interface into the bulk of the solder. Additionally, the XRD technique has also been used in a temperature-resolved mode to observe the formation of IMCs, in situ, during the solidification of the solder joint. The results demonstrate that the XRD technique is very attractive as it allows for nondestructive investigations to be performed on expensive state-of-the-art electronic components, thereby allowing new, lead-free materials to be fully characterized.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we explore the application of cooperative communications in ultra-wideband (UWB) wireless body area networks (BANs), where a group of on-body devices may collaborate together to communicate with other groups of on-body equipment. Firstly, time-domain UWB channel measurements are presented to characterize the body-centric multipath channel and to facilitate the diversity analysis in a cooperative BAN (CoBAN). We focus on the system deployment scenario when the human subject is in the sitting posture. Important channel parameters such as the pathloss, power variation, power delay profile (PDP), and effective received power (ERP) crosscorrelation are investigated and statistically analyzed. Provided with the model preliminaries, a detailed analysis on the diversity level in a CoBAN is provided. Specifically, an intuitive measure is proposed to quantify the diversity gains in a single-hop cooperative network, which is defined as the number of independent multipaths that can be averaged over to detect symbols. As this measure provides the largest number of redundant copies of transmitted information through the body-centric channel, it can be used as a benchmark to access the performance bound of various diversity-based cooperative schemes in futuristic body sensor systems.