4 resultados para Secure Wireless Communications

em Greenwich Academic Literature Archive - UK


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Orthogonal frequency division multiplexing(OFDM) is becoming a fundamental technology in future generation wireless communications. Call admission control is an effective mechanism to guarantee resilient, efficient, and quality-of-service (QoS) services in wireless mobile networks. In this paper, we present several call admission control algorithms for OFDM-based wireless multiservice networks. Call connection requests are differentiated into narrow-band calls and wide-band calls. For either class of calls, the traffic process is characterized as batch arrival since each call may request multiple subcarriers to satisfy its QoS requirement. The batch size is a random variable following a probability mass function (PMF) with realistically maximum value. In addition, the service times for wide-band and narrow-band calls are different. Following this, we perform a tele-traffic queueing analysis for OFDM-based wireless multiservice networks. The formulae for the significant performance metrics call blocking probability and bandwidth utilization are developed. Numerical investigations are presented to demonstrate the interaction between key parameters and performance metrics. The performance tradeoff among different call admission control algorithms is discussed. Moreover, the analytical model has been validated by simulation. The methodology as well as the result provides an efficient tool for planning next-generation OFDM-based broadband wireless access systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We consider the optimum design of pilot-symbol-assisted modulation (PSAM) schemes with feedback. The received signal is periodically fed back to the transmitter through a noiseless delayed link and the time-varying channel is modeled as a Gauss-Markov process. We optimize a lower bound on the channel capacity which incorporates the PSAM parameters and Kalman-based channel estimation and prediction. The parameters available for the capacity optimization are the data power adaptation strategy, pilot spacing and pilot power ratio, subject to an average power constraint. Compared to the optimized open-loop PSAM (i.e., the case where no feedback is provided from the receiver), our results show that even in the presence of feedback delay, the optimized power adaptation provides higher information rates at low signal-to-noise ratios (SNR) in medium-rate fading channels. However, in fast fading channels, even the presence of modest feedback delay dissipates the advantages of power adaptation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we explore the application of cooperative communications in ultra-wideband (UWB) wireless body area networks (BANs), where a group of on-body devices may collaborate together to communicate with other groups of on-body equipment. Firstly, time-domain UWB channel measurements are presented to characterize the body-centric multipath channel and to facilitate the diversity analysis in a cooperative BAN (CoBAN). We focus on the system deployment scenario when the human subject is in the sitting posture. Important channel parameters such as the pathloss, power variation, power delay profile (PDP), and effective received power (ERP) crosscorrelation are investigated and statistically analyzed. Provided with the model preliminaries, a detailed analysis on the diversity level in a CoBAN is provided. Specifically, an intuitive measure is proposed to quantify the diversity gains in a single-hop cooperative network, which is defined as the number of independent multipaths that can be averaged over to detect symbols. As this measure provides the largest number of redundant copies of transmitted information through the body-centric channel, it can be used as a benchmark to access the performance bound of various diversity-based cooperative schemes in futuristic body sensor systems.