10 resultados para Safety-critical software

em Greenwich Academic Literature Archive - UK


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Deliberating on Enterprise Resource Planning (ERP) software sourcing and provision, this paper contrasts the corporate environment with the small business environment. The paper is about Enterprise Resource Planning client (ERPc) expectations and Enterprise Resource Planning vendor (ERPv) value propositions as a mutually compatible process for achieving acceptable standards of ERP software performance. It is suggested that a less-than-equitable vendor–client relationship would not contribute to the implementation of the optimum solution. Adapting selected theoretical concepts and models, the researchers analyse ERPv to ERPc relationship. This analysis is designed to discover if the provision of the very large ERP vendors who market systems such as SAP, and the provision of the smaller ERP vendors (in this instance Eshbel Technologies Ltd who market an ERP software solution called Priority) when framed as a value proposition (Walters, D. (2002) Operations Strategy. Hampshire, UK: Palgrave), is at all comparable or distinctive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There have been few genuine success stories about industrial use of formal methods. Perhaps the best known and most celebrated is the use of Z by IBM (in collaboration with Oxford University's Programming Research Group) during the development of CICS/ESA (version 3.1). This work was rewarded with the prestigious Queen's Award for Technological Achievement in 1992 and is especially notable for two reasons: 1) because it is a commercial, rather than safety- or security-critical, system and 2) because the claims made about the effectiveness of Z are quantitative as well as qualitative. The most widely publicized claims are: less than half the normal number of customer-reported errors and a 9% savings in the total development costs of the release. This paper provides an independent assessment of the effectiveness of using Z on CICS based on the set of public domain documents. Using this evidence, we believe that the case study was important and valuable, but that the quantitative claims have not been substantiated. The intellectual arguments and rationale for formal methods are attractive, but their widespread commercial use is ultimately dependent upon more convincing quantitative demonstrations of effectiveness. Despite the pioneering efforts of IBM and PRG, there is still a need for rigorous, measurement-based case studies to assess when and how the methods are most effective. We describe how future similar case studies could be improved so that the results are more rigorous and conclusive.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

When designing a new passenger ship or modifying an existing design, how do we ensure that the proposed design and crew emergency procedures are safe from an evacuation resulting from fire or other incident? In the wake of major maritime disasters such as the Scandinavian Star, Herald of Free Enterprise, Estonia and in light of the growth in the number of high density, high-speed ferries and large capacity cruise ships, issues concerning the evacuation of passengers and crew at sea are receiving renewed interest. Fire and evacuation models with features such as the ability to realistically simulate the spread of heat and smoke and the human response to fire as well as the capability to model human performance in heeled orientations linked to a virtual reality environment that produces realistic visualisations of the modelled scenarios are now available and can be used to aid the engineer in assessing ship design and procedures. This paper describes the maritimeEXODUS ship evacuation and the SMARTFIRE fire simulation model and provides an example application demonstrating the use of the models in performing fire and evacuation analysis for a large passenger ship partially based on the requirements of MSC circular 1033

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer based mathematical models describing the aircraft evacuation process have a vital role to play in the design and development of safer aircraft, the implementation of safer and more rigorous certification criteria, in cabin crew training and post-mortem accident investigation. As the risk of personal injury and the costs involved in performing full-scale certification trials are high, the development and use of these evacuation modelling tools are essential. Furthermore, evacuation models provide insight into the evacuation process that is impossible to derive from a single certification trial. The airEXODUS evacuation model has been under development since 1989 with support from the UK CAA and the aviation industry. In addition to describing the capabilities of the airEXODUS evacuation model, this paper describes the findings of a recent CAA project aimed at investigating model accuracy in predicting past certification trials. Furthermore, airEXODUS is used to examine issues related to the Blended Wing Body (BWB) and Very Large Transport Aircraft (VLTA). These radical new aircraft concepts pose considerable challenges to designers, operators and certification authorities. BWB concepts involving one or two decks with possibly four or more aisles offer even greater challenges. Can the largest exits currently available cope with passenger flow arising from four or five aisles? Do we need to consider new concepts in exit design? Should the main aisle be made wider to accommodate more passengers? In this paper we discuss various issues evacuation related issues associated VLTA and BWB aircraft and demonstrate how computer based evacuation models can be used to investigage these issues through examination of aisle/exit configurations for BWB cabin layouts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The newly formed Escape and Evacuation Naval Authority regulates the provision of abandonment equipment and procedures for all Ministry of Defence Vessels. As such, it assures that access routes on board are evaluated early in the design process to maximize their efficiency and to eliminate, as far as possible, any congestion that might occur during escape. This analysis can be undertaken using a computer-based simulation for given escape scenarios and replicates the layout of the vessel and the interactions between each individual and the ship structure. One such software tool that facilitates this type of analysis is maritimeEXODUS. This tool, through large scale testing and validation, emulates human shipboard behaviour during emergency scenarios; however it is largely based around the behaviour of civilian passengers and fixtures and fittings of merchant vessels. Hence there existed a clear requirement to understand the behaviour of well-trained naval personnel as opposed to civilian passengers and be able to model the fixtures and fittings that are exclusive to warships, thus allowing improvements to both maritimeEXODUS and other software products. Human factor trials using the Royal Navy training facilities at Whale Island, Portsmouth were recently undertaken to collect data that improves our understanding of the aforementioned differences. It is hoped that this data will form the basis of a long-term improvement package that will provide global validation of these simulation tools and assist in the development of specific Escape and Evacuation standards for warships. © 2005: Royal Institution of Naval Architects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At 8.18pm on 2 September 1998, Swissair Flight 111 (SR 111), took off from New York’s JFK airport bound for Geneva, Switzerland. Tragically, the MD-11 aircraft never arrived. According to the crash investigation report, published on 27 March 2003, electrical arcing in the ceiling void cabling was the most likely cause of the fire that brought down the aircraft. No one on board was aware of the disaster unfolding in the ceiling of the aircraft and, when a strange odour entered the cockpit, the pilots thought it was a problem with the air-conditioning system. Twenty minutes later, Swissair Flight 111 plunged into the Atlantic Ocean five nautical miles southwest of Peggy’s Cove, Nova Scotia, with the loss of all 229 lives on board. In this paper, the Computational Fluid Dynamics (CFD) analysis of the in-flight fire that brought down SR 111 is described. Reconstruction of the wreckage disclosed that the fire pattern was extensive and complex in nature. The fire damage created significant challenges to identify the origin of the fire and to appropriately explain the heat damage observed. The SMARTFIRE CFD software was used to predict the “possible” behaviour of airflow as well as the spread of fire and smoke within SR 111. The main aims of the CFD analysis were to develop a better understanding of the possible effects, or lack thereof, of numerous variables relating to the in-flight fire. Possible fire and smoke spread scenarios were studied to see what the associated outcomes would be. This assisted investigators at Transportation Safety Board (TSB) of Canada, Fire & Explosion Group in assessing fire dynamics for cause and origin determination.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes the use of a blackboard architecture for building a hybrid case based reasoning (CBR) system. The Smartfire fire field modelling package has been built using this architecture and includes a CBR component. It allows the integration into the system of qualitative spatial reasoning knowledge from domain experts. The system can be used for the automatic set-up of fire field models. This enables fire safety practitioners who are not expert in modelling techniques to use a fire modelling tool. The paper discusses the integrating powers of the architecture, which is based on a common knowledge representation comprising a metric diagram and place vocabulary and mechanisms for adaptation and conflict resolution built on the Blackboard.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract not available

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Embedded software systems in vehicles are of rapidly increasing commercial importance for the automotive industry. Current systems employ a static run-time environment; due to the difficulty and cost involved in the development of dynamic systems in a high-integrity embedded control context. A dynamic system, referring to the system configuration, would greatly increase the flexibility of the offered functionality and enable customised software configuration for individual vehicles, adding customer value through plug-and-play capability, and increased quality due to its inherent ability to adjust to changes in hardware and software. We envisage an automotive system containing a variety of components, from a multitude of organizations, not necessarily known at development time. The system dynamically adapts its configuration to suit the run-time system constraints. This paper presents our vision for future automotive control systems that will be regarded in an EU research project, referred to as DySCAS (Dynamically Self-Configuring Automotive Systems). We propose a self-configuring vehicular control system architecture, with capabilities that include automatic discovery and inclusion of new devices, self-optimisation to best-use the processing, storage and communication resources available, self-diagnostics and ultimately self-healing. Such an architecture has benefits extending to reduced development and maintenance costs, improved passenger safety and comfort, and flexible owner customisation. Specifically, this paper addresses the following issues: The state of the art of embedded software systems in vehicles, emphasising the current limitations arising from fixed run-time configurations; and the benefits and challenges of dynamic configuration, giving rise to opportunities for self-healing, self-optimisation, and the automatic inclusion of users’ Consumer Electronic (CE) devices. Our proposal for a dynamically reconfigurable automotive software system platform is outlined and a typical use-case is presented as an example to exemplify the benefits of the envisioned dynamic capabilities.