4 resultados para STATEMENTS
em Greenwich Academic Literature Archive - UK
Resumo:
This paper presents a formalism for representing temporal knowledge in legal discourse that allows an explicit expression of time and event occurrences. The fundamental time structure is characterized as a well‐ordered discrete set of primitive times, i.e. non‐decomposable intervals with positive duration or points with zero duration), from which decomposable intervals can be constructed. The formalism supports a full representation of both absolute and relative temporal knowledge, and a formal mechanism for checking the temporal consistency of a given set of legal statements is provided. The general consistency checking algorithm which addresses both absolute and relative temporal knowledge turns out to be a linear programming problem, while in the special case where only relative temporal relations are involved, it becomes a simple question of searching for cycles in the graphical representation of the corresponding legal text.
Resumo:
The notion of time plays a vital and ubiquitous role of a common universal reference. In knowledge-based systems, temporal information is usually represented in terms of a collection of statements, together with the corresponding temporal reference. This paper introduces a visualized consistency checker for temporal reference. It allows expression of both absolute and relative temporal knowledge, and provides visual representation of temporal references in terms of directed and partially weighted graphs. Based on the temporal reference of a given scenario, the visualized checker can deliver a verdict to the user as to whether the scenario is temporally consistent or not, and provide the corresponding analysis / diagnosis.
Resumo:
A natural approach to representing and reasoning about temporal propositions (i.e., statements with time-dependent truth-values) is to associate them with time elements. In the literature, there are three choices regarding the primitive for the ontology of time: (1) instantaneous points, (2) durative intervals and (3) both points and intervals. Problems may arise when one conflates different views of temporal structure and questions whether some certain types of temporal propositions can be validly and meaningfully associated with different time elements. In this paper, we shall summarize an ontological glossary with respect to time elements, and diversify a wider range of meta-predicates for ascribing temporal propositions to time elements. Based on these, we shall also devise a versatile categorization of temporal propositions, which can subsume those representative categories proposed in the literature, including that of Vendler, of McDermott, of Allen, of Shoham, of Galton and of Terenziani and Torasso. It is demonstrated that the new categorization of propositions, together with the proposed range of meta-predicates, provides the expressive power for modeling some typical temporal terms/phenomena, such as starting-instant, stopping-instant, dividing-instant, instigation, termination and intermingling etc.
Resumo:
The representation and manipulation of natural human understanding of temporal phenomena is a fundamental field of study in Computer Science, which aims both to emulate human thinking, and to use the methods of human intelligence to underpin engineering solutions. In particular, in the domain of Artificial Intelligence, temporal knowledge may be uncertain and incomplete due to the unavailability of complete and absolute temporal information. This paper introduces an inferential framework for deriving logical explanations from partial temporal information. Based on a graphical representation which allows expression of both absolute and relative temporal knowledge in incomplete forms, the system can deliver a verdict to the question if a given set of statements is temporally consistent or not, and provide understandable logical explanation of analysis by simplified contradiction and rule based reasoning.