4 resultados para SMA, Skid resistance, texture, Contact Area, RTM

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The work presented in this paper focuses on the effect of reflow process on the contact resistance and reliability of anisotropic conductive film (ACF) interconnection. The contact resistance of ACF interconnection increases after reflow process due to the decrease in contact area of the conducting particles between the mating I/O pads. However, the relationship between the contact resistance and bonding parameters of the ACF interconnection with reflow treatment follows the similar trend to that of the as-bonded (i.e. without reflow) ACF interconnection. The contact resistance increases as the peak temperature of reflow profile increases. Nearly 40% of the joints were found to be open after reflow with 260 °C peak temperature. During the reflow process, the entrapped (between the chip and substrate) adhesive matrix tries to expand much more than the tiny conductive particles because of the higher coefficient of thermal expansion, the induced thermal stress will try to lift the bump from the pad and decrease the contact area of the conductive path and eventually, leading to a complete loss of electrical contact. In addition, the environmental effect on contact resistance such as high temperature/humidity aging test was also investigated. Compared with the ACF interconnections with Ni/Au bump, higher thermal stress in the Z-direction is accumulated in the ACF interconnections with Au bump during the reflow process owing to the higher bump height, thus greater loss of contact area between the particles and I/O pads leads to an increase of contact resistance and poorer reliability after reflow.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose – This paper discusses the use of modelling techniques to predict the reliability of an anisotropic conductive film (ACF) flip chip in a humid environment. The purpose of this modelling work is to understand the role that moisture plays in the failure of ACF flip chips. Design/methodology/approach – A 3D macro-micro finite element modelling technique was used to determine the moisture diffusion and moisture-induced stresses inside the ACF flip chip. Findings – The results show that the ACF layer in the flip chip can be expected to be fully saturated with moisture after 3?h at 121°C, 100%RH, 2?atm test conditions. The swelling effect of the adhesive due to this moisture absorption causes predominately tensile stress at the interface between the adhesive and the metallization, which could cause a decrease in the contact area, and therefore an increase in the contact resistance. Originality/value – This paper introduces a macro-micro modelling technique which enables more detailed 3D modelling analysis of an ACF flip chip than previously.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, the performance of flexible substrates for lead-free applications was studied using finite element method (FEM). Firstly, the thermal induced stress in the flex substrate during the lead free solder reflow process was predicted. The shear stress at the interface between the copper track and flex was plotted. This shear stress increases with the thickness of the copper track. Secondly, an ACF flip chip was taken as a typical lead-free application of the flex substrate. The reflow effect on the reliability of ACF interconnections was analyzed. Higher stress was identified along the interface between the conductive particle and the metallization, and the interfacial stress increases with the reflow peak temperature and the coefficient of thermal expansion (CTE) of the adhesive. The moisture effect on the reliability of ACF joints were studied using a macro-micro modeling technique, the predominantly tensile stress found at the interface between the conductive particle and metallization could reduce the contact area and even cause the electrical failure. Modeling results are consistent with the findings in the experimental work

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of flexible substrates for lead-free applications was studied using finite element method (FEM). Firstly, the thermal induced stress in the flex substrate during the lead free solder reflow process was predicted. The shear stress at the interface between the copper track and flex was plotted. This shear stress increases with the thickness of the copper track and the thickness of the flex. Secondly, an anisotropic conductive film (ACF) flip chip was taken as a typical lead-free application of the flex substrate and the moisture effect on the reliability of ACF joints were studied using a 3D macro-micro modeling technique. It is found that the time to be saturated of an ACF flip chip is much dependent on the moisture diffusion rate in the polyimide substrate. The majority moisture diffuses into the ACF layer from the substrate side rather than the periphery of the ACF. The moisture induced stress was predicted and the predominant tensile stress was found at the interface between the conductive particle and metallization which could reduce the contact area and even cause the electrical failure