4 resultados para SE(T) SPECIMEN
em Greenwich Academic Literature Archive - UK
Resumo:
This paper investigates an isothermal fatigue test for solder joints developed at the NPL. The test specimen is a lap joint between two copper arms. During the test the displacement at the ends of the copper are controlled and the force measured. The modeling results in the paper show that the displacement across the solder joint is not equal to the displacement applied at the end of the specimen. This is due to deformation within the copper arms. A method is described to compensate for this difference. The strain distribution in the solder was determined by finite element analysis and compared to the distribution generated by a theoretical 'ideal' test which generates an almost pure shear mode in the solder. By using a damage-based constitutive law the shape of the crack generated in the specimen has been predicted for both the actual test and the ideal pure shear test. Results from the simulations are also compared with experimental data using SnAgCu solder.
Resumo:
Electromagnetic Levitation (EML) is a valuable method for measuring the thermo-physical properties of metals - surface tensions, viscosity, thermal/electrical conductivity, specific heat, hemispherical emissivity, etc. – beyond their melting temperature. In EML, a small amount of the test specimen is melted by Joule heating in a suspended AC coil. Once in liquid state, a small perturbation causes the liquid envelope to oscillate and the frequency of oscillation is then used to compute its surface tension by the well know Rayleigh formula. Similarly, the rate at which the oscillation is dampened relates to the viscosity. To measure thermal conductivity, a sinusoidally varying laser source may be used to heat the polar axis of the droplet and the temperature response measured at the polar opposite – the resulting phase shift yields thermal conductivity. All these theoretical methods assume that convective effects due to flow within the droplet are negligible compared to conduction, and similarly that the flow conditions are laminar; a situation that can only be realised under microgravity conditions. Hence the EML experiment is the method favoured for Spacelab experiments (viz. TEMPUS). Under terrestrial conditions, the full gravity force has to be countered by a much larger induced magnetic field. The magnetic field generates strong flow within the droplet, which for droplets of practical size becomes irrotational and turbulent. At the same time the droplet oscillation envelope is no longer ellipsoidal. Both these conditions invalidate simple theoretical models and prevent widespread EML use in terrestrial laboratories. The authors have shown in earlier publications that it is possible to suppress most of the turbulent convection generated in the droplet skin layer, through use of a static magnetic field. Using a pseudo-spectral discretisation method it is possible compute very accurately the dynamic variation in the suspended fluid envelope and simultaneously compute the time-varying electromagnetic, flow and thermal fields. The use of a DC field as a dampening agent was also demonstrated in cold crucible melting, where suppression of turbulence was achieved in a much larger liquid metal volume and led to increased superheat in the melt and reduction of heat losses to the water-cooled walls. In this paper, the authors describe the pseudo-spectral technique as applied to EML to compute the combined effects of AC and DC fields, accounting for all the flow-induced forces acting on the liquid volume (Lorentz, Maragoni, surface tension, gravity) and show example simulations.
Resumo:
In this study, a simplified Acoustic Emission (AE) equipment, in essence an AE signal conditioner and a USB (Universal Serial Bus) data acquisition system, is used to study what happens in paper structures during mechanical loading. By the use of such equipment, some parameters that can be extracted are e.g. the stress and strain at onset of AE, the stress and strain at the onset of rapid AE defined as some numerical factor (larger then one) times the initial emission rate, the emission rate at the first stage of loading and the stress and strain at final failure i.e. when the specimen loses its load carrying ability.In this study however, the interest is focused on one particular parameter i.e. the elastic strain energy density W c at onset of AE. This is a parameter with a clear physical meaning and in this study, the correlation between this parameter and a fracture toughness measure, is investigated.The conclusion is that when nine different paper materials (with a large span regarding properties) are considered, there is a correlation (however not linear) between these two parameters.
Resumo:
There are two major types of erosion testing devices that are used throughout the world for quantifying particle impact erosion against a solid surface. The first of these uses pressurised air to accelerate abrasive particles through a nozzle so that they impinge upon a target specimen. The second adopts a rotating disc to accelerate abrasive particles using the centripetal effect so that they impinge upon a series of targets arranged around the periphery of the disc. This paper reports the findings of a collaborative project that was designed to compare the performance and results obtained from a rig of each of the two types mentioned above. The sand blast type rig was provided by The Department of Powder Science Technology (POSTEC) at The Telemark Technological Research and Development Centre (TEL-TEK), Porsgrunn, Norway while the centripetal effect accelerator was provided by The Wolfson Centre for Bulk Solids Handling Technology, University of Greenwich, London, UK. The test programme included tests against a wide range of materials that are commonly used in pneumatic handling facilities. (Pneumatic handling is a means of conveying and transporting powders and granular solid materials in bulk in industrial process plant, through pipelines using a gas as the carrier medium.) Olivine sand was used as the abrasive and it was projected against the test specimens at velocities and concentrations commensurate with those seen in pneumatic conveyors. In all instances the materials used in the test programme were taken from the same batch so that scatter of experimental results due to specimen variation was minimised. The paper contains a series of recommendations for erosion testing equipment. A discussion based on the results and their applicability to the prediction of wear in pneumatic conveyors concludes the paper.