3 resultados para SCHEDULING OF GRID TASKS

em Greenwich Academic Literature Archive - UK


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the findings of an experiment which looked at the effects of performing applied tasks (action learning) prior to the completion of the theoretical learning of these tasks (explanation-based learning), and vice-versa. The applied tasks took the form of laboratories for the Object-Oriented Analysis and Design (OOAD) course, theoretical learning was via lectures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A visibility/invisibility paradox of trust operates in the development of distributed educational leadership for online communities. If trust is to be established, the team-based informal ethos of online collaborative networked communities requires a different kind of leadership from that observed in more formal face-to-face positional hierarchies. Such leadership is more flexible and sophisticated, being capable of encompassing both ambiguity and agile response to change. Online educational leaders need to be partially invisible, delegating discretionary powers, to facilitate the effective distribution of leadership tasks in a highly trusting team-based culture. Yet, simultaneously, online communities are facilitated by the visibility and subtle control effected by expert leaders. This paradox: that leaders need to be both highly visible and invisible when appropriate, was derived during research on 'Trust and Leadership' and tested in the analysis of online community case study discussions using a pattern-matching process to measure conversational interactions. This paper argues that both leader visibility and invisibility are important for effective trusting collaboration in online distributed leadership. Advanced leadership responses to complex situations in online communities foster positive group interaction, mutual trust and effective decision-making, facilitated through the active distribution of tasks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper describes the architecture of the knowledge based system (KBS) component of Smartfire, a fire field modelling tool for use by members of the fire safety engineering community who are not expert in modelling techniques. The KBS captures the qualitative reasoning of an experienced modeller in the assessment of room geometries, so as to set up the important initial parameters of the problem. Fire modelling expertise is an example of geometric and spatial reasoning, which raises representational problems. The approach taken in this project is a qualitative representation of geometric room information based on Forbus’ concept of a metric diagram. This takes the form of a coarse grid, partitioning the domain in each of the three spatial dimensions. Inference over the representation is performed using a case-based reasoning (CBR) component. The CBR component stores example partitions with key set-up parameters; this paper concentrates on the key parameter of grid cell distribution.