6 resultados para Run length
em Greenwich Academic Literature Archive - UK
Resumo:
A nested heuristic approach that uses route length approximation is proposed to solve the location-routing problem. A new estimation formula for route length approximation is also developed. The heuristic is evaluated empirically against the sequential method and a recently developed nested method for location routing problems. This testing is carried out on a set of problems of 400 customers and around 15 to 25 depots with good results.
Resumo:
This paper describes a methodology for deploying flexible dynamic configuration into embedded systems whilst preserving the reliability advantages of static systems. The methodology is based on the concept of decision points (DP) which are strategically placed to achieve fine-grained distribution of self-management logic to meet application-specific requirements. DP logic can be changed easily, and independently of the host component, enabling self-management behavior to be deferred beyond the point of system deployment. A transparent Dynamic Wrapper mechanism (DW) automatically detects and handles problems arising from the evaluation of self-management logic within each DP and ensures that the dynamic aspects of the system collapse down to statically defined default behavior to ensure safety and correctness despite failures. Dynamic context management contributes to flexibility, and removes the need for design-time binding of context providers and consumers, thus facilitating run-time composition and incremental component upgrade.
Resumo:
This paper describes an autonomics development tool which serves as both a powerful and flexible policy-expression language and a policy-based framework that supports the integration and dynamic composition of several autonomic computing techniques including signal processing, automated trend analysis and utility functions. Each of these technologies has specific advantages and applicability to different types of dynamic adaptation. The AGILE platform enables seamless interoperability of the different technologies to each perform various aspects of self-management within a single application. Self-management behaviour is specified using the policy language semantics to bind the various technologies together as required. Since the policy semantics support run-time re-configuration, the self-management architecture is dynamically composable. The policy language and implementation library have integrated support for self-stabilising behaviour, enabling oscillation and other forms of instability to be handled at the policy level with very little effort on the part of the application developer. Example applications are presented to illustrate the integration of different autonomics techniques, and the achievement of dynamic composition.
Resumo:
This paper describes a highly flexible component architecture, primarily designed for automotive control systems, that supports distributed dynamically- configurable context-aware behaviour. The architecture enforces a separation of design-time and run-time concerns, enabling almost all decisions concerning runtime composition and adaptation to be deferred beyond deployment. Dynamic context management contributes to flexibility. The architecture is extensible, and can embed potentially many different self-management decision technologies simultaneously. The mechanism that implements the run-time configuration has been designed to be very robust, automatically and silently handling problems arising from the evaluation of self- management logic and ensuring that in the worst case the dynamic aspects of the system collapse down to static behavior in totally predictable ways.
Resumo:
This study attempts to characterise the electromyographic activity and kinematics exhibited during the performance of take-off for a pole vaulting short run-up educational exercise, for different expertise levels. Two groups (experts and novices) participated in this study. Both groups were asked to execute their take-off technique for that specific exercise. Among the kinematics variables studied, the knee, hip and ankle angles and the hip and knee angular velocities were significantly different. There were also significant differences in the EMG variables, especially in terms of (i) biceps femoris and gastrocnemius lateralis activity at touchdown and (ii) vastus lateralis and gastrocnemius lateralis activity during take-off. During touchdown, the experts tended to increase the stiffness of the take-off leg to decrease braking. Novices exhibited less stiffness in the take-off leg due to their tendency to maintain a tighter knee angle. Novices also transferred less energy forward during take-off due to lack of contraction in the vastus lateralis, which is known to contribute to forward energy transfers. This study highlights the differences in both groups in terms of muscular and angular control according to the studied variables. Such studies of pole vaulting could be useful to help novices to learn expert's technique.