4 resultados para Ronald Moran

em Greenwich Academic Literature Archive - UK


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the casting of metals, tundish flow, welding, converters, and other metal processing applications, the behaviour of the fluid surface is important. In aluminium alloys, for example, oxides formed on the surface may be drawn into the body of the melt where they act as faults in the solidified product affecting cast quality. For this reason, accurate description of wave behaviour, air entrapment, and other effects need to be modelled, in the presence of heat transfer and possibly phase change. The authors have developed a single-phase algorithm for modelling this problem. The Scalar Equation Algorithm (SEA) (see Refs. 1 and 2), enables the transport of the property discontinuity representing the free surface through a fixed grid. An extension of this method to unstructured mesh codes is presented here, together with validation. The new method employs a TVD flux limiter in conjunction with a ray-tracing algorithm, to ensure a sharp bound interface. Applications of the method are in the filling and emptying of mould cavities, with heat transfer and phase change.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A modeling strategy is presented to solve the governing equations of fluid flow, temperature (with solidification), and stress in an integrated manner. These equations are discretized using finite volume methods on unstructured grids, which provide the capability to represent complex domains. Both the cell-centered and vertex-based forms of the finite volume discretization procedure are explained, and the overall integrated solution procedure using these techniques with suitable solvers is detailed. Two industrial processes, based on the casting of metals, are used to demonstrate the capabilities of the resultant modeling framework. This manufacturing process requires a high degree of coupling between the governing physical equations to accurately predict potential defects. Comparisons between model predictions and experimental observations are given.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

High-integrity castings require sophisticated design and manufacturing procedures to ensure they are essentially macrodefect free. Unfortunately, an important class of such defects—macroporosity, misruns, and pipe shrinkage—are all functions of the interactions of free surface flow, heat transfer, and solidication in complex geometries. Because these defects arise as an interaction of the preceding continuum phenomena, genuinely predictive models of these defects must represent these interactions explicitly. This work describes an attempt to model the formation of macrodefects explicitly as a function of the interacting continuum phenomena in arbitrarily complex three-dimensional geometries. The computational approach exploits a compatible set of finite volume procedures extended to unstructured meshes. The implementation of the model is described together with its testing and a measure of validation. The model demonstrates the potential to predict reliably shrinkage macroporosity, misruns, and pipe shrinkage directly as a result of interactions among free-surface fluid flow, heat transfer, and solidification.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The domain decomposition method is directed to electronic packaging simulation in this article. The objective is to address the entire simulation process chain, to alleviate user interactions where they are heavy to mechanization by component approach to streamline the model simulation process.